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Problem definition: Mass Trauma Events (MTEs)—such as wars, natural disasters, and terror

attacks—present significant operational challenges. Affected populations require both immediate and pro-

longed mental health support, complicating response efforts. Post-traumatic Stress Disorder (PTSD) can

have lasting effects and imposes a substantial economic burden, making early intervention critical to improv-

ing outcomes. The October 7, 2023, terror attack in southern Israel caused widespread trauma. Survivors,

responders, and many others were exposed to extreme atrocities, placing an estimated 5.3% of the population

(over 520,000 individuals) at risk of developing PTSD and related conditions. This crisis underscores the

urgent need for practical policies to deliver timely mental health care amid a surge in demand on an already

strained system.

Methodology/results: We study the coordination of group and individual therapy channels in a multi-

server queueing setting. Group therapy can alleviate immediate workload but may lead to increased follow-up

demand for individual treatment. Our model captures this trade-off and the interdependence between therapy

channels, while accounting for key mental health system features such as patient no-shows and dropouts.

Using a fluid approximation, we derive index-based policies tailored to the Surge, Recovery, and Long-Term

Phases of MTEs, integrating time-varying, transient, and steady-state dynamics. Drawing on data from the

October 7 attack and prior MTEs, we show that our policies can shorten the recovery phase by approximately

six months, reduce queue lengths by 31%, and increase total cost savings by 52%, relative to a commonly

accepted benchmark policy which we adapted to incorporate group therapy, no-shows, and dropouts. These

improvements result from the embedded channel coordination in our policies.

Managerial implications: Our results highlight the value of channel-specific coordination in mental health

scheduling policies for traumatized populations. The index-based rules we propose are simple to imple-

ment and offer actionable guidance for practitioners and policymakers managing care delivery after MTEs.

Applying these policies can enhance support for at-risk populations, reduce system strain, and strengthen

community recovery and resilience.

Key words : Stochastic modeling, healthcare operations management, fluid models, scheduling queues,

mass casualty events

1. Introduction

Mass trauma events (MTEs)—such as wars, natural disasters, and terror attacks—create

widespread psychological distress and place acute pressure on mental health systems.
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Unlike mass casualty events (MCEs), where injuries are physical and immediate, the

psychological harms associated with MTEs often emerge gradually and persist long

after the event (Chriman and Dougherty 2014, Hirschberger 2018, Makari and Friedman

2024). Without timely intervention, these mental health consequences—most notably Post-

Traumatic Stress Disorder (PTSD)—impose severe human, public health, and economic

burdens (von der Warth et al. 2020, Davis et al. 2022).

MTEs of various scales continue to occur globally each year. From the ongoing Russia-

Ukraine war to earthquakes in Myanmar, Afghanistan, Morocco, and Japan, the Southern

California wildfires, and terror attacks such as the Crocus City Hall shooting and the

October 7 Hamas attack and subsequent Hamas-Israel war, recent events underscore the

growing need for scalable mental health responses.

The October 7, 2023, terror attack in Israel further illustrates the magnitude of this chal-

lenge. Mental health services reported a 200% surge in patients, a 25% rise in psychiatric

medication use, and a 52% increase in anxiety-related cases (The Jerusalem Post, 2024).

Projections estimate that over 520,000 individuals may develop PTSD (Katsoty et al.

2024).

Experience from prior MTEs underscores the long-term nature of these mental health

needs. More than two decades after the 9/11 attacks, Mount Sinai’s World Trade Center

Mental Health Program continues to treat approximately 700 patients, with new admissions

ongoing (Mount Sinai Blog, 2021). This highlights the enduring demand placed on mental

health systems and the importance of operational models that account for long-term effects.

Mental health systems responding to MTEs must manage large, time-varying surges in

demand. These systems typically progress through three distinct operational phases, as

illustrated in Figure 1, each with unique dynamics, objectives, and constraints. Despite

the growing frequency of MTEs and the operational challenges they pose, the OR/OM

literature offers limited guidance on how to allocate resources dynamically during such

crises.

To address this gap, we develop an analytical queueing model that supports dynamic

scheduling and capacity allocation decisions across the three response phases introduced

above.

The Surge Phase marks the onset of an MTE response, during which the mental health

system experiences a sharp and overwhelming increase in demand, with highly variable

https://www.jpost.com/health-and-wellness/mind-and-spirit/article-782330
https://health.mountsinai.org/blog/twenty-years-later-a-grim-anniversary-as-mount-sinai-remains-a-lifeline-for-9-11-responders/
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Figure 1 Three response phases in the aftermath of MTEs.
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arrival rates. The duration of this phase depends on the event’s scale and nature. For

example, following the 9/11 and October 7 attacks, elevated demand persisted for several

months (Herman et al. 2002).

In the second phase, the Recovery Phase, arrival rates begin to stabilize, but a substantial

backlog of untreated patients remains. The goal is to maximize treatment throughput and

cost-effectively return the system to a manageable state (Gibbs and Skyler 2004).

The final Long-Term Care Phase involves extended therapy for patients with enduring

needs. This phase may last years or even decades (Bowler et al. 2016). Across all phases,

a central operational challenge is how to cost-effectively schedule and prioritize access to

care.

While PTSD has no cure, short-term psychological treatments can reduce symptoms

and improve quality of life. Cognitive-behavioral therapy (CBT) is a trauma-focused

approach shown to be both cost-effective and effective in the short and long term

(von der Warth et al. 2020). Other treatments include prolonged exposure, cognitive-

processing therapy, and EMDR (eye movement desensitization and reprocessing).

Group therapy is a common approach in mental health care that helps patients share

experiences, reduce isolation, and build coping skills in a supportive setting (Sloan et al.

2012, Yalom and Leszcz 2020). During MTEs, it increases treatment capacity and reduces

wait times. Patients with persistent symptoms may be referred to individual therapy for

more intensive care. This tiered structure balances efficiency with personalized treatment.

Coordinating group and individual therapy is crucial for effective and efficient care deliv-

ery. While group sessions improve throughput and alleviate immediate resource constraints,

they may reduce individual attention and therapeutic effectiveness. Patients who do not

respond well may require follow-up individual care, further straining system capacity. Clin-

ical outcomes are also sensitive to group size (Daley et al. 1983, Dueweke et al. 2022), but

the optimal size that balances efficiency and effectiveness remains unclear.
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The paper’s contributions are as follows:

• Integrated Modeling of Group and Individual Therapy. We develop a multi-server

dynamic queueing model where therapists provide series of sessions aimed at trauma

processing and recovery. Patients begin with group sessions and, if needed, proceed to

individual therapy. Our model captures the dependency and trade-off between group and

individual therapy in addressing mental health needs following MTEs. The model explicitly

incorporates patient no-shows and dropouts, which are particularly prevalent in mental

health settings, especially PTSD.

• Phase-Specific Index Policies for Optimal Scheduling. Using a fluid approximation,

we derive optimal scheduling policies tailored to the Surge, Recovery, and Long-Term

Care Phases – each with distinct dynamics, objectives, and constraints – integrating time-

varying, transient, and steady-state elements. We also demonstrate how our model can

help determine the optimal group size that balances efficiency and effectiveness in this

setting.

Using data from the October 7 terror attack and previous MTEs, we demonstrate that

our policies significantly improve system performance – shortening the recovery phase by

nearly six months and increasing overall cost savings by more than half – compared to an

adapted version of the cµ/θ rule that accounts for group therapy, no-shows, and dropouts.

• Coordinated Resource Allocation Across Channels. We demonstrate the critical role

of coordinated resource allocation between group and individual therapy channels. Since

group therapy serves as a feeder channel to individual therapy, effective scheduling and

resource allocation require coordination across both channels. This coordination leads to

significantly improved system outcomes compared to policies that treat the channels inde-

pendently.

The remainder of the paper is organized as follows: Section 2 reviews related literature.

Section 3 introduces the model components, assumptions and formulations. Sections 4, 5,

and 6 analyze the Long-Term Care, Recovery, and Surge Phases, respectively. Section 7

presents a case study using data from the October 7 MTE. Section 8 concludes the paper

and offers future research directions. The appendix includes a multi-class extension, addi-

tional numerical results and technical proofs.
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2. Literature Review

Due to the limited operational research on MTEs, our review focuses on two related streams

of literature: (i) OR/OM studies on managing MCEs and (ii) scheduling and resource

allocation in multi-server queues. Although these areas may appear to overlap, they differ

fundamentally in their analytical focus. Traditional queueing models emphasize steady-

state optimization, whereas MCE-related research must capture transient dynamics driven

by sudden and overwhelming surges in demand.

Related to our focus on group-based service delivery, the healthcare OM literature has

examined shared medical appointments (SMAs), where patients are treated in groups

rather than individually. Empirical studies in glaucoma care have shown SMAs improve

patient engagement, satisfaction, and compliance (Sönmez et al. 2023, Buell et al. 2024).

While these works demonstrate the practical value of group service delivery, our contribu-

tion lies in developing an analytical model to optimize such systems.

2.1. OR/OM Literature on Managing MCEs

A substantial body of OR/OM work has focused on patient prioritization during MCEs.

Jacobson et al. (2012) proposed heuristic policies based on patients’ wait tolerance, service

time, and rewards, showing that simple state-dependent rules can perform well. Mills et al.

(2018) developed a fluid model for patient transfers during MCEs, demonstrating improve-

ments over the START triage protocol by incorporating survival probabilities and resource

constraints. Sun et al. (2018) identified optimal strategies for balancing triage and service

times, introducing a “switching curve” that guides when triage is beneficial. Li et al. (2020)

applied index policies based on Whittle’s restless bandits to prioritize patient classes under

finite and uncertain horizons. Rezapour et al. (2022) derived optimal casualty treatment

strategies for large-scale incidents, showing the advantage of dynamic resource allocation.

Shi et al. (2023) extended this line of work by incorporating victim deterioration trajecto-

ries and resource availability into emergency planning.

Resource allocation under MCEs has also received attention. Cohen et al. (2014) opti-

mized surgeon allocation using two policies—static prioritization and dynamic switch-

ing—offering actionable strategies for both planning and real-time response. Lodree et al.

(2019) proposed heuristics for queue management that prioritize critical patient classes

with buffer capacity for future arrivals. For a broad overview, see the review by

Farahani et al. (2020).
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A related setting arises during pandemics, where demand exceeds capacity. Motivated by

COVID-19, Chan et al. (2021) used a fluid model to study inter-facility transfers, aiming

to alleviate hospital congestion and improve equity in patient distribution.

Most MCE studies adopt a clearing system model, where a sudden influx of patients

must be treated and the system eventually empties. In contrast, MTEs unfold over three

operational phases: a Surge Phase with highly variable arrivals, a Recovery Phase with

stabilized arrivals and a backlog, and a Long-Term Phase with prolonged care needs. Full

clearance is rarely attainable in MTEs, even over extended horizons.

Our work contributes by modeling each phase as a distinct operational problem, incor-

porating time-varying, transient, and steady-state dynamics. Unlike most MCE-focused

models, we also account for key features relevant to mental health systems—such as group

therapy, follow-up individual care, no-shows, and dropouts—within a tractable modeling

framework.

2.2. Scheduling and Resource Allocation in Multi-Server Queues

Our work is closely related to the literature on scheduling in multi-class queueing sys-

tems. Numerous generalizations of the classical cµ rule (Cox and Smith 1961)—which

is optimal for single-server queues with linear holding costs—have been developed,

with many establishing asymptotic optimality via fluid models (Van Mieghem 1995,

Mandelbaum and Stolyar 2004, Huang et al. 2015). In the many-server setting, Atar et al.

(2010) established the asymptotic optimality of the cµ/θ rule under customer aban-

donment. Subsequent work has extended this framework to more general cost struc-

tures (Long et al. 2020), proactive service policies (Hu et al. 2022), heterogeneous server

pools (Long et al. 2024), and the use of AI to reduce diagnostic errors (Cai and Zychlinski

2025).

Our work also connects to models with re-work or readmissions, common in

healthcare. Dai and Weiss (1996) analyzed fluid models for re-entrant lines, while

Yom-Tov and Mandelbaum (2014) developed the Erlang-R model to support staffing under

time-varying arrivals. More recently, Chan et al. (2024) studied policies to reduce return

probabilities in systems where customers may re-enter after discharge.

In contrast to prior work, we develop dynamic scheduling policies tailored to distinct

operational phases following mass trauma events. Our model incorporates several features
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specific to mental health systems, including the interaction between group and individual

therapy, patient no-shows, and dropouts.

We contribute to this literature by modeling the coordination between group and individ-

ual treatment channels, where group sessions serve as feeders for individual therapy. This

interdependence—spanning time-varying, transient, and steady-state regimes—introduces

analytical challenges. Our structural results and numerical experiments demonstrate the

robustness and effectiveness of the proposed policies.

3. The Stochastic Model

We structure our analysis around the three response phases that follow an MTE, as illus-

trated in Figure 1. Across these phases, we address the central question of how to cost-

effectively schedule individuals seeking mental health support and allocate resources across

both treatment channels. Before analyzing each phase in detail, we first present the foun-

dational elements of our coordinated model for group and individual therapy services.

We consider a Markovian multi-server queueing model with N servers. These servers are

shared between two service channels: one for group therapy, denoted by m, and the other

for individual therapy, denoted by s, as illustrated in Figure 2.

As we explain shortly, the service in both channels includes a sequence of sessions aimed

at processing traumatic events and providing coping strategies. The number of sessions is

determined at the outset of treatment, when all sequential appointments are allocated.

Let J = {m, s} denote the set of treatment channels. We use a subscript j, where j ∈J ,

to distinguish parameters specific to each channel. In Appendix C, we extend the model

to a multi-class setting, where each class may receive treatment through both channels.

Arriving patients first enter the group therapy channel, where each patient requires

mm servers (with 1/mm representing the group size). We focus on open group therapy,

which allows members to join or leave as they complete their assigned sessions. This struc-

ture is well-suited for MTEs, enabling immediate, scalable support without the delays

of closed group formation. It maximizes access, reduces wait times, and accommodates

diverse trauma responses by offering flexible, individualized care.

Group sessions may be less effective for some patients. Therefore, upon completion of the

group session series, some patients require additional individual therapy with probability

p(mm), while with probability 1− p(mm), they exit the system. Although the probability
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of requiring additional individual therapy depends on the group size, for simplicity, we

will use p in place of p(mm). In Section 4.1, we analyze the effects of different patterns of

p(mm).

To keep our model general and facilitate the generalization to multiple classes, we assume

that each patient in the individual channel requires ms servers. Note that mm and ms can

take any positive real value. In practice, mm is typically a rational number, determined

by the therapist-to-patient ratio. For instance, mm = 1/5 means that each patient requires

one-fifth of a server (equivalently, a group consists of five participants) and ms = 1. By

adjusting the unit of measurement, one-fifth of a server can be redefined as a unit of service

capacity, in which case we set mm = 1 and ms = 5. In our simulation experiments, we use

this integer adjustment.

Figure 2 Model illustration of group and individual service channels with no-shows, dropouts and abandonments.
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Next, we introduce the stochastic components of the model. Let Xj(t) denote the total

number patients in Channel j, j ∈ J at time t, t ≥ 0. Similarly, let Qj(t) represent the

number of patients waiting in queue for Channel j at time t. We define X(t) = (Xj(t), j ∈

J ) andQ(t) = (Qj(t), j ∈J ), so that the system state at time t is described by (X(t),Q(t)).

We denote by Zj(t) the number of servers assigned to patients in Channel j at time t.

The decision variables Z(t) = (Zj(t), j ∈J ) must satisfy the following conditions for every

t≥ 0 and j ∈J :

∑

j∈J

Zj(t)≤N, Xj(t)−
Zj(t)

mj

=Qj(t)≥ 0,
Zj(t)

mj

∈N+.
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Note that the number of servers in our model represents full-time equivalent (FTE)

resources, reflecting the effective availability for MTE-related treatment after accounting

for existing commitments, such as time allocated to pre-MTE mental health needs.

Service, abandonment and associated costs. The treatment for patients at risk of

developing PTSD consists of a series of 12 to 24 psychological sessions, scheduled once or

twice a week; the number of sessions and their frequency is set depending on the patient’s

condition and type of exposure. Since the number of sessions is determined at the outset

of treatment, when all sequential appointments are allocated with the same therapist, we

model the entire appointment sequence as a single service time. If the group sessions prove

ineffective, the patient begins an individual series of sessions, with a fixed duration set at

the outset of treatment.

While awaiting the first (group/individual) session, patients may leave the queue in

search of alternative support. Treatment and patience times for each class of patients follow

exponential distributions with rates µb
j and θj, respectively, for Channel j ∈J .

Let Γj(t) and Dj(t) denote the cumulative number of abandonments and treatment

completions, respectively, in Channel j, up to time t≥ 0. Let hj denote the holding cost

per time unit for each patient in Channel j, and bj denote the cost savings from treatment

completion of each Channel j patient1. Finally, an abandonment cost, αj, is incurred for

each patient who abandons while waiting for treatment in Channel j.

No-shows and dropouts. No-shows and dropouts are common in mental health treat-

ments, particularly for PTSD patients (Milicevic et al. 2020, Xaba et al. 2024, Fenger et al.

2011). No-shows occur when a patient misses an appointment without prior notice. Beyond

the negative impact on the patient’s well-being and treatment outcome, no-shows result

in unoccupied and wasted treatment slots, as each no-show patient rejoins the system for

an additional appointment. Moreover, no-shows can occur multiple times during a session

series (i.e., patients may miss more than one session), further disrupting the scheduling

process. To capture this capacity loss, we define βj as the probability of a patient being

served in Channel j to show up for a scheduled appointment, where 1− βj represents the

probability of a no-show.

1 Incorporating different cost savings for patients who complete their service in the group channel but require addi-
tional individual service can be easily achieved by partitioning Dm(T ) into two groups: those requiring additional
individual service and those who do not. Each group can then be assigned its corresponding cost savings. For simplicity
in the formulation, we leave them combined.
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To model the total service requirement accounting for no-shows, recall that µb
j denotes

the mean required service time, assuming patients attend all scheduled appointments. The

number of attended appointments required to complete treatment can be viewed as a

binomial random variable with n attempts and a success probability of βj. The expected

number of attended appointments is therefore nβj, which equals 1/µb
j, the required num-

ber of completed appointments. Consequently, the total number of required appointment

attempts – accounting for no-shows – corresponds to 1/(βjµ
b
j) = 1/µj, where we define

µj := βjµ
b
j as the effective service rate. The fact that the effective service rate is lower than

the basic service rate (i.e., effective service times are longer) contributes to greater system

overload and cost.

This modeling approach is similar to Huang et al. (2015), who studied the scheduling

of in-process (IP) patients in the emergency department (ED) who occasionally return for

follow-up checks. However, in Huang et al. (2015), patient returns occur upon treatment

completion, whereas in our case, the service consists of a series of sessions, during which a

patient may miss and reschedule multiple appointments due to no-shows.

While no-shows allow the patient to remain in the system and attend subsequent sessions

after missing one, dropouts occur when a patient completely quits the program. In this

case, the patient permanently leaves the system, and their future appointments can be

reassigned to other patients. We define γj as the dropout rate from Channel j, and hd
j as

the cost associated with each such dropout. We denote by Γd
j (t) the cumulative number of

dropouts, respectively, from Channel j, up to time t≥ 0.

3.1. Scheduling Policy and Overall Cost Savings

A scheduling policy π ∈Ω determines the allocation of servers channels, where Ω denotes

the set of admissible controls, namely, all non-anticipating scheduling policies. That is,

server allocations are made based on the current state (X,Q) only. Under such scheduling

policies, {(X(t),Q(t)) : t≥ 0} is a Markov process.

Since the process {(X(t),Q(t)) : t ≥ 0} depends on the scheduling policy π, we can

explicitly indicate this dependence by expressing the stochastic process as {(Xπ(t),Qπ(t)) :

t ≥ 0}, along with Dπ
j (t), Γ

π
j (t), and Γπ,d

j (t). For simplicity, we will omit the subscript π

when the context makes the dependence on the policy clear.
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The overall cost savings for both channels over [0, T ] is, therefore,

E

[

∑

j∈J

[

bjDj(T )−αjΓj(T )−hd
jΓ

d
j (T )

]

−

∫ T

0

∑

j∈J

hjQj(t)dt

]

.

The Markovian modeling assumption implies that for any j ∈J ,

E [Dj(T )] =
µj

mj

E

[∫ T

0

Zj(t)dt

]

, E
[

Γd
j (T )

]

=
γj
mj

E

[∫ T

0

Zj(t)dt

]

,

and

E [Γj(T )] = θjE

[∫ T

0

Qj(t)dt

]

.

Therefore, the overall cost savings can be rewritten as

E

[

∫ T

0

∑

j∈J

[

1

mj

(

bjµj −hd
jγj
)

Zj(t)− (hj +αjθj)Qj(t)

]

dt

]

.

By defining the generalized cost savings and the generalized holding cost as follows:

rj :=
1

mj

(

bjµj −hd
jγj
)

, cj := hj +αjθj, (1)

the overall cost savings becomes:

E

[

∫ T

0

∑

j∈J

[rjZj(t)− cjQj(t)] dt

]

.

Each of the three response phases we analyze is associated with a different cost savings

objective: transient cost savings maximization during and immediately after the event, and

long-run average cost savings maximization in the later stage. In all cases, the problem is an

MDP. The curse of dimensionality (Papadimitriou and Tsitsiklis 1999) – a large (infinite)

state-space and policy-space – makes it prohibitively hard to solve and characterize the

optimal scheduling policy. To gain structural insights into the optimal scheduling policy, we

take a deterministic fluid approach. Fluid models are known to provide good approximation

of the first-order mean dynamics of stochastic systems, and are thus useful for a variety of

applications related to service operations management (Whitt 2002).

Moreover, analyzing the stochastic system in this setting is challenging because both

channels are interdependent, and the group channel involves a large number of pos-

sible server-to-patient permutations (Armony and Bambos 2003, Zychlinski et al. 2023,

Grosof and Harchol-Balter 2023). The deterministic continuous fluid approach we adopt

enables a more tractable analysis and yields structural insights. Given the overloaded

nature of systems during MTEs, fluid models provide a natural and effective framework

for deriving operational insights into the optimal solution.
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3.2. The Fluid Model

For the fluid model, we remove the integer constraints and replace the discrete stochastic

processes (i.e., arrivals, departures, abandonments, no-shows, dropouts, and referrals from

the group channel to the individual one) by their corresponding deterministic flow rates.

Denote by λ(t) the arrival rate of Class i customers to the group channel at time t.

In the fluid model, we use lowercase xj(t) and qj(t), j ∈J , to denote the fluid content in

the system and in the queue, respectively. We use zj(t) to denote the allocation of service

capacity to Channel j, such that
∑

j∈J zj(t)≤N , for all t≥ 0. Similarly to the stochastic

system, we define x(t) = (xj(t), j ∈J ), q(t) = (qj(t), j ∈J ), and z(t) = (zj(t), j ∈J ).

The fluid scheduling policy π determines how to prioritize and allocate resources across

both channels. Specifically, the fluid dynamics is characterized by the following set of

differential equations (DEs):

q̇m(t) = λ(t)− θmqm(t)− (µm + γm) zm(t)/mm;

q̇s(t) = pµmzm(t)/mm− θsqs(t)− (µs + γs) zm(t)/ms.

The first DE applies to the group channel and accounts for abandonments while waiting,

treatment completion rate, and dropout rate from treatment. Note that no-shows are

factored into the system’s dynamics through the effective service rate µj. The second DE

applies to the individual channel. Here, the arrival rate is the treatment completion rate

from the group channel multiplied by the probability of requiring an additional individual

treatment. Note that on average in Channel j, each unit of service capacity allocated

enables the treatment of µj/mj patients over one unit of time.

Definition 1 (Admissible Fluid Scheduling Policy). A scheduling policy is said

to be admissible if it is Markovian and satisfies the following constraints for all t≥ 0:

∑

j∈J

zj(t)≤N, zj(t)≥ 0, q̇j(t)≥ 0 whenever qj(t) = 0, j ∈J ,

where the third constraint ensures that the queue length processes remain non-negative,

preventing the queues from becoming negative when they are empty.

In the following sections, we analyze the three response phases following an MTE and

define the transition points between them. Rather than proceeding chronologically, we

present the phases in order of analytical complexity. This structure reflects our solution
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approach: the Long-Term Care Phase provides the foundation for the Recovery Phase,

which in turn informs the Surge Phase.

We first solve the Long-Term Care and Recovery Phases independently, each with its

own dynamics, constraints, and objectives. The Surge Phase is then addressed sequentially,

incorporating the Recovery Phase’s value function into its objective. In this framework, the

Long-Term Care Phase yields the P rule, which determines optimal prioritization between

group and individual channels. This rule underpins the more advanced scheduling policies

used in the Recovery and Surge Phases.

4. Long-Term Care Phase

The impact of MTEs on patients’ mental health can persist for years and even decades

(Bowler et al. 2016). This section focuses on developing a scheduling policy and long-term

resource allocation that maximizes the long-run average cost savings. We assume that

arrivals to the group channel follow a time-homogeneous Poisson process with rate λ.

The long-run cost savings maximization problem for the fluid model is formulated as

the following infinite-dimensional linear program:

max
z,q

lim inf
T→∞

1

T

∫ T

0

∑

j∈J

[rjzj(t)− cjqj(t)] dt

s.t. q̇m(t) = λ− θmqm(t)− (µm + γm) zm(t)/mm, t≥ 0

q̇s(t) = pµmzm(t)/mm− θsqs(t)− (µs + γs) zs(t)/ms, t≥ 0
∑

j∈J

zj(t)≤N, zj(t)≥ 0, qj(t)≥ 0, j ∈J , t≥ 0.

(2)

If the fluid dynamics converge to an equilibrium point (q̄, z̄) as t→∞, then maximizing

the long-run average cost savings reduces to a finite-dimensional linear program. This

observation, formalized in Theorem 1, leads to the following problem formulation:

max
q̄,z̄

∑

j∈J

[rj z̄j − cj q̄j]

s.t. q̄m = 1
θm

(

λ− (µm + γm) z̄m
mm

)

,

q̄s =
1
θs

(

pµm

z̄m
mm
− (µs + γs)

z̄s
ms

)

,
∑

j∈J

z̄j ≤N, z̄j ≥ 0, q̄j ≥ 0, j ∈J .

(3)
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Rearranging (3) and removing the constants that do not affect the optimization yield

the following equivalent problem:

max
z̄

Pmz̄m +Psz̄s

s.t. 0≤ z̄m ≤
λmm

(µm + γm)
,

0≤ z̄s ≤
pµmms

(µs + γs)mm

z̄m,

z̄m+ z̄s ≤N,

(4)

where the P indexes are defined as:

Pm := rm +
cm

θmmm

(γm+µm)−
pcs

θsmm

µm,

Ps := rs +
cs

θsms

(µs + γs) .
(5)

Recall that rj and cj, j ∈ J , as defined in (1), depend on rates and costs of service, no-

shows, dropouts, and abandonments.

Since problem (4) is a linear program, the optimal solution tends to assign a larger value

to z̄i when it has a larger Pi coefficient. Furthermore, we observe that the second constraint

in (4) defines a dependency between z̄m and z̄s – the group channel serves as the feeding

source for the individual channel. Therefore, the long-run resource allocation must also be

interconnected.

To better understand this dependency, we first define the following index policy.

Definition 2. (The P index rule)

• When Pm >Ps: Prioritize group patients over the individual ones.

• When Pm <Ps: Prioritize individual patients over the group ones.

Theorem 1 establishes the optimality of the P rule scheduling policy and characterizes

the long-run resource allocation to the group channel and subsequent individual channel.

For the sake of simplicity, we assume that the indices are unique; otherwise, multiple

optimal scheduling policies may prevail, which can complicate the analysis.

Theorem 1 (optimality of the P index rule). For the long-run cost savings maxi-

mization problem (2), with θj > 0, j ∈ J , and any initial condition, the P rule in Definition

2 is optimal, and
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• If Pm >Ps (group patients are prioritized): The long-run average resource allocation

is:

z̄m =N ∧
λmm

µm + γm
, z̄s = (N − z̄m)∧

(

pµmms

(µs + γs)mm

z̄m

)

, (6)

where x∧ y=min(x, y).

• If Pm <Ps (individual patients are prioritized): The long-run average resource allo-

cation is:

z̄m =
λmm

µm + γm
∧

(µs + γs)mmN

mm (µs + γs)+ pµmms

, z̄s =
pµmms

(µs + γs)mm

z̄m. (7)

When the group channel is prioritized over the individual channel (Pm >Ps), resources

are allocated to both service channels separately: first to the group channel, then to the

individual channel. In contrast, when the individual channel is prioritized (Pm < Ps),

resource allocation must be coordinated to ensure that the group channel—serving as a

feeder to the individual channel—receives sufficient capacity. In this case, resources must

be allocated jointly across both channels to ensure that the allocation to the individual

channel satisfies the upper bound constraint in (4). In Appendix C.1.2 we discuss how to

manage idleness in small systems.

4.1. Numerical Experiments – Setting the Optimal Group Size

Empirical evidence indicates that clinical outcomes are influenced by group size. For

instance, effectiveness may follow a quadratic relationship with group size, or fall within

specific ranges depending on the diagnosis and treatment context (Daley et al. 1983,

Yalom and Leszcz 2020, Dueweke et al. 2022). To capture these variations, our model

assumes a general relationship between group size and effectiveness.

This section serves two purposes. The first is to demonstrate the optimal group size

under different group-size effect assumptions, and the second is to evaluate the effectiveness

of the proposed P rule in the corresponding stochastic system via simulation.

Specifically, in addition to determining the optimal scheduling and long-run average

resource allocation for each channel, the formulation in (4)–(5) can be used to identify

the optimal group size, 1/mm. The effectiveness of each group size is captured through

the probability of requiring additional individual therapy following group therapy, which

depends on the structure of p(mm). Given this relationship, the optimal group size for
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each class can be found by solving the small-dimensional optimization problem in (4) for

a range of reasonable values (typically between 3 and 15).

Figure 3 illustrates three group-size effects reported in the literature on optimal resource

allocation between group and individual therapy channels. In Scenarios 1 and 2, p(mm) is

increasing convex or concave, respectively, indicating that as group size increases, groups

become less effective. In Scenario 3, p(mm) follows a quadratic pattern, where both small

and large groups are less effective.

Figure 3 Long-run average resource allocation for different group size effects. The solid lines represent the fluid

solution, while the dashed lines represent the 95% confidence intervals based on the simulation results.

The parameters are λ= 120, N = 50, µm = 0.9, µs = 0.6, γm = 0.1, γs = 0.1, θm = 0.1, θs = 0.1, ms = 1,

rm = 26, rs = 46, cm = 2, cs = 16.
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Each plot shows the optimal long-run resource allocation for each channel – zm and zs

– as a function of group size, based on both the optimal fluid solution and a stochastic

simulation model. The fluid solution is obtained by solving the linear program in (4)–(5),

while the stochastic simulation solution is obtained by following the P rule for channel

prioritization in the simulation and calculating the long-run resource allocation and cost

savings. In the latter, for each group size and effect, we computed the average and the 95%

confidence interval over 100 replications, each with T = 10,000.

The long-run average cost savings, shown as a dashed line corresponding to the right

y-axis, varies in shape across scenarios and affects the optimal group size. The optimal

group size is 10 in the first scenario, 5 in the second scenario, and 8 in the third scenario.

These findings demonstrate that there is no one-size-fits-all group size. Therefore, decision-

makers must incorporate the group size effect for each patient class when designing such

systems. Additionally, resource allocation to both channels must be done in coordination
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since the channels are interdependent. Lastly, these findings suggest that the fluid-based

P-rule policy is accurate and effective when implemented in the original stochastic system.

5. Recovery Phase

Some time after the initial Surge Phase, arrival rates begin to stabilize; however, a signifi-

cant backlog of patients requiring mental health support remains. The goal is to determine

an optimal scheduling policy that efficiently addresses the backlog and transitions the

system toward a more sustainable operational state2.

In Section 6, we analyze the Surge Phase, characterized by highly variable arrival rates

and critically insufficient resources to meet demand. In contrast, during the Recovery

Phase, we assume that the system has sufficient long-run capacity to serve all incoming

patients. Specifically, we impose the condition:

ρ :=
λmm

µm + γm
+

λpms

µs + γs
<N, (8)

which guarantees that the system is capable of eventually clearing the backlog.

Accordingly, we define the transition from the Surge Phase to the Recovery Phase to

occur at the first time when two conditions are met: (i) the arrival rate stabilizes—that

is, the average arrival rate λ remains approximately constant over time—and (ii) this

stabilized λ satisfies inequality (8). While detecting a constant arrival rate is inherently

data-driven, a practical implementation may rely on observing sustained periods without

significant changes. In Section 7, we demonstrate how to identify this transition using real

arrival rate data.

We define the stopping time τ := inf{t ≥ 0 : qm(t) + qs(t) = 0}, as the transition point

from the Recovery Phase to the Long-Term Care Phase, that is, the first time at which

both queues are fully depleted. Based on the proof of Theorem 1, and under the assumption

that the system has sufficient capacity in this phase (i.e., condition (8) holds), there exists

a scheduling policy such that τ <∞ for any initial condition.

2 At the end of this phase when transition to the Long-Term Phase, the number of therapists which was expanded
through therapists recruitment from the private sector or reserves and the extension of working hours of part-time
therapists for the Surge and Recovery Phase can be reduced.
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We focus on the following transient optimization problem

max
z,q

∫ τ

0

∑

j∈J

[rjzj(t)− cjqj(t)] dt

s.t. q̇m(t) = λ− θmqm(t)− (µm + γm) zm(t)/mm,

q̇s(t) = pµmzm(t)/mm− θsqs(t)− (µs + γs) zs(t)/ms,
∑

j∈J

zj(t)≤N, zj(t)≥ 0, qj(t)≥ 0, j ∈J .

(9)

Let τ ∗ denote the time required to empty the queue under the optimal policy. Problem

(9) falls under the category of optimal control with state constraints. These problems are

typically difficult to solve due to the boundary conditions they impose (Hartl et al. 1995).

We begin by establishing that the exclusion of irregular boundary behaviors (i.e., the

non-negativity of queue lengths) holds strictly and proving that it suffices to focus on

trajectories that avoid both chattering points and chattering intervals. These results are

formally developed in Appendix A.

Next, we note that the transient system dynamics are complex due to specific features of

our model—particularly the asymmetric dependency between both service channels, with

one serving as the source for the other. To gain insight into the solution structure, we

solve the discrete-time version of (9), formulated as the following finite-dimensional linear

program:

max
z,q

τ
∑

t=0

∑

j∈J

∆t [rjzj(t)− cjqj(t)]

s.t. qm(t+∆t) = qm(t)+∆t

[

λ− θmqm(t)−
(µm + γm)zm(t)

mm

]

, t∈ [0, τ −∆t],

qs(t+∆t) = qs(t)+∆t

[

pµmzm(t)

mm

− θsqs(t)−
(µs + γs)zs(t)

ms

]

, t∈ [0, τ −∆t],

∑

j∈J

zj(t)≤N, zj(t)≥ 0, qj(t)≥ 0, j ∈J , t∈ [0, τ −∆t],

(10)

where ∆t is the discretization step size.

Our extensive numerical experiments show that in some cases, the optimal policy in

the transient setting is to follow the P index rule throughout the entire horizon. In other

cases – particularly when initial queue lengths are large – the optimal policy initially

applies strict priority according to the P rule, and then at some point the priority is
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switched. Similar switching behavior has been observed in other transient queueing systems

(Cohen et al. 2014, Hu et al. 2022), though those models do not involve re-entrant flows

or interdependent service channels, as in our setting.

Figure 4 presents two such scenarios, each with N = 10 servers and initial queue lengths

of qm(0) = 350 and qs(0) = 250. The top plots illustrate the optimal resource allocation to

both channels over time, while the bottom plots depict the evolution of the corresponding

queue lengths. In the left scenario, Pm > Ps. Initially, all resources are allocated to the

group channel, in line with the P index rule. We note that the decrease in qs is not linear

due to abandonments. Around time t≈ 4, the priority shifts, and all resources are allocated

to the individual channel. This continues until the individual queue is depleted. At this

point, resources are allocated in coordination across both channels, ensuring that patients

completing the group channel who require the individual channel do not form a queue.

Once both queues are empty, the server allocation ensures that they remain empty, as

there are now sufficient resources to treat all arriving patients.

In the right scenario, the situation is reversed, with Pm <Ps. Initially, all resources are

allocated to the individual channel, again consistent with the P index rule. At time t= 5,

the priority switches, and all resources are shifted to the group channel. This continues until

the group queue is emptied. Afterward, the group channel receives the necessary resources

to maintain a zero queue, while the remaining servers are allocated to the individual channel

until its queue is cleared. Once both queues are empty, the server allocation ensures that

they remain empty, as there are now sufficient resources to treat all arriving patients.

To gain a deeper understanding of the switching phenomenon, we analyze the optimal

trajectories of the queue lengths in both channels, starting from various initial conditions as

indicated by the top-right starting point of each line. Figure 5 presents four representative

examples. The top plots use the same parameters as in Figure 4, but with different initial

queue lengths. At the beginning, when the queue lengths are very large following the Surge

Phase, the optimal prioritization adheres to the P rule (Channel m on the left plot and

Channel s on the right plot). As the queue lengths decrease, the priority switches to the

other channel. The dashed lines in these figures connect the points where the priority

switches. From that point onward, the same priority is maintained until both queues are

empty. Notably, in these two cases, as well as in all other cases we examined, the switching

line appears to follow a nearly linear pattern.
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Figure 4 Optimal transient resource allocation and queue length for each channel. In the left plots: N = 10,

λ = 5, θm = 0.1, θs = 0.3, µm = 0.8, µs = 0.6, γm = 0.1, γs = 0.1, p = 0.5, mm = 1/5, ms = 1, rm =

100µm/mm, rs = 400µs/ms, cm = 2, cs = 4, qm(0) = 350, qs(0) = 250. In the right plots: N = 10, λ= 5,

θm = 0.15, θs = 0.1, µm = 0.8, µs = 0.6, γm = 0.1, γs = 0.1, p= 0.5, mm = 1/5, ms = 1, rm = 50µm/mm,

rs = 400µs/ms, cm = 2, cs = 3, qm(0) = 350, qs(0) = 250.
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To determine this curve, we solve the discrete-time version (10) for a range of represen-

tative initial queue lengths, (qm(0), qs(0)), that sufficiently span the relevant state space.

These initial conditions generate a set of optimal trajectories from which we identify the

boundary between the two priority regimes. We approximate this boundary by fitting a

linear function of the form qs = κqm + d, where κ is the slope and d is the intercept.

Specifically, we apply simple linear regression to the set of switching points (qim, q
i
s), where

i= 1,2, . . . , I indexes the selected representative points. This approach provides flexibility

in capturing the approximate slope of the boundary curve. In practice, the switching curve

appears nearly linear, so this approximation is both simple and effective for visualization

and interpretation.

Therefore, for the Recovery Phase, we propose the recovery-based P rule, which utilizes

this switching curve: as long as qm + qs exceeds the curve, the system follows the P rule;

once qm+ qs falls below the curve, the system switches priority to the inverse P rule.
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Figure 5 Optimal trajectories of queue lengths for different initial conditions. In the left plots (Case 1): T = 25,

N = 10, θm = 0.1, θs = 0.3, µm = 0.8, µs = 0.6, γm = 0.1, γs = 0.1, p = 0.5, mm = 1/5, ms = 1, rm =

100µm/mm, rs = 400µs/ms, cm = 2, cs = 4. In the right plots (Case 2): T = 50, N = 10, θm = 0.15, θs =

0.1, µm = 0.8, µs = 0.6, γm = 0.1, γs = 0.1, p= 0.5, mm = 1/5, ms = 1, rm = 50µm/mm, rs = 400µs/ms,

cm = 2, cs = 3.
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Note that the bottom plots of Figure 5 use the same parameters as the top ones, except

for a higher arrival rate λ, resulting in a heavier system load (with ρ= 0.45 in the top plots

and ρ= 1 in the bottom plots). When the system is highly loaded – as is often the case in

MTEs, which are the focus of this study – the optimal policy maintains a consistent priority

throughout the horizon, adhering to the standard P rule. In such cases, the recovery-based

P rule coincides with the standard P rule.

In Appendix B.1, we assess the performance of the proposed policy through stochastic

simulation. The results show that the difference between the optimal fluid objective and

the average transient cost savings in the stochastic model is very small across all cases. This
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difference is particularly small when the traffic intensity is high and no priority switching

occurs, similar to the bottom plots in Figure 5.

Remark 1 (Setting the optimal group size). While the analysis of optimal group

size was demonstrated explicitly for the Long-Term Care Phase in Section 4.1, a similar

procedure could, in principle, be applied to the surge and recovery phases. Specifically, one

could evaluate a range of candidate group sizes, apply the proposed scheduling policy for

each, derive the corresponding switching curves (which would differ across group sizes),

and select the group size that maximizes cost savings. Such a procedure would need to be

conducted offline, based on a forecasted arrival pattern. This type of analysis could also

serve as part of preparedness planning for future MTEs.

6. Surge Phase

In typical MCEs, the Surge Phase – where arrival rates fluctuate significantly over time and

resources are critically insufficient to meet demand – is relatively short, as most casualties

receive treatment within hours of the event (Arnold et al. 2003). However, in the case of

MTEs, the surge phase can be considerably longer, as patients may take time to recognize

the need for mental health support. Moreover, in prolonged MTEs such as wars, series of

terror attacks, or natural disasters, the Surge Phase itself can be extended.

We assume a finite duration T for the Surge Phase, during which the patient arrival rate

is given by λ(t) for t∈ [0, T ]. The transition to the Recovery Phase occurs at time T , which

we define as the first time when the arrival rate stabilizes (i.e., becomes approximately

constant) and satisfies the capacity condition in (8). This ensures that the system is capable

of eventually clearing the backlog. Following Hu et al. (2022), we define the time required

to clear the remaining backlog as τ := inf{t ≥ T : qm(t) + qs(t) = 0} − T , and denote by

τ ∗ the duration of this clearance period under the optimal policy. The endpoint of the

Recovery Phase (i.e., time T + τ ∗) marks the transition to the Long-Term Care Phase.

The optimization problem for the Surge Phase is, therefore,

max
z,q

∫ T

0

∑

j∈J

[rjzj(t)− cjqj(t)] dt+F (qm(T ), qs(T ))

s.t. q̇m(t) = λ(t)− θmqm(t)− (µm + γm) zm(t)/mm, t≥ 0

q̇s(t) = pµmzm(t)/mm− θsqs(t)− (µs + γs) zs(t)/ms, t≥ 0
∑

j∈J

zj(t)≤N, zj(t)≥ 0, qj(t)≥ 0, j ∈J , t≥ 0,

(11)
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where F (qm(T ), qs(T )) is the optimal objective value for the Recovery Phase problem (9)

studied in Section 5, only with a time shift from [0, τ ] to [T,T + τ ] and initial conditions

(qm(T ), qs(T )). As a result of this relationship, we can leverage some of the insights derived

in Section 5 to the Surge Phase.

To illustrate these insights, we use the time-varying arrival rates of patients needing

mental health support, as shown in Figure 6. Scenario 1, with multiple peaks and fluctua-

tions, could represent a large-scale disaster with recurring stressors, such as an earthquake

with repeated tremors, where anxiety and trauma responses resurface with each event.

Scenario 2, characterized by a single sharp peak followed by a steady decline, suggests a

sudden, intense incident in which the initial shock triggers a surge in mental health support

needs that gradually stabilizes, as might occur following a terror attack. Scenario 3, with

multiple peaks of diminishing intensity, might reflect a prolonged crisis, such as an ongoing

war or sequential traumatic events, leading to periodic surges in mental health support as

individuals process each new trauma.

Figure 6 Scenarios for time-varying arrival rates during the Surge Phase.
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Figure 7 presents the same two scenarios from Figure 4, but with the the time-varying

arrival rate illustrated in Figure 6, Scenario 1.

In the left plot, where Pm > Ps, we observe that at the onset of the surge, the opti-

mal policy follows the P rule, prioritizing the group channel by allocating the necessary

resources to it and distributing the remaining resources to the individual channel. Around

t≈ 60, the priority shifts to the individual channel, and the system continues this allocation

until both queues are depleted. In the right plot, where Pm <Ps, the situation is reversed.

Initially, the optimal policy prioritizes the individual channel, in accordance with the P

rule, allocating resources in such a way that the individual channel maintains a zero queue.
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Around t≈ 60, the priority switches to the group channel, and the system continues this

allocation until both queues are cleared.

Figure 7 Optimal time-varying resource allocation and queue length for each channel, using the same two

scenarios as in Figure 4 under the arrival pattern from Figure 6, Scenario 1.
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The switching point during the Surge Phase is complex and highly sensitive to both the

initial state and the phase duration. Therefore, we propose the surge-based P rule, which

is informed by the analysis of the Recovery Phase in Section 5 and our numerical findings.

The surge-based P rule utilizes the switching curve derived in Section 5. During the

Surge Phase, for t∈ [0, T ), the system follows the P rule. Afterwards, if qm+qs exceeds the

switching curve, the P rule is applied; otherwise, the switched P rule is followed when the

system is below the curve. Note that the suggested surge-based P is applied dynamically

without requiring T to be determined in advance. Once arrival rates begin to stabilize

(assuming no recurring events), the Recovery-based policy can be implemented.

In Appendix B.2, we present additional numerical results comparing different versions

of the P rule with the optimal fluid value function across the joint Surge and Recovery

Phases. The results show that while the recovery-based P rule performs reasonably well

during the Surge Phase, the surge-based P rule consistently outperforms the other policies

across all scenarios and achieves near-optimal performance.
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7. Case Study: The October 7, 2023 Terror Attack

In this section, we implement the proposed policies and evaluate their effectiveness in the

context of the October 7 terror attack and the ongoing war, which triggered unprecedented

demand for mental health support. For this case study, we apply the extended multi-class

framework developed in Appendix C, where each class may receive treatment through both

channels.

Following Katsoty et al. (2024), we consider six patient classes summarized in Table 1,

which differ in exposure intensity, context, and type. Class sizes are based on official

national databases, and PTSD prevalence rates are drawn from relevant literature corre-

sponding to each exposure category.

Table 1 Exposure-based classes to the October 7 terror attacks (source: Katsoty et al. 2024).

Class Exposure type Class size
Estimated PTSD Expected number

prevalence of PTSD cases

1 Direct exposure to the terror attack 39,664 0.31 12,366

2 Close proximity to the terror attack 121,061 0.1 12,372

3 War-involved soldiers 144,227 0.08 11,021

4
Civilians under intense exposure to rocket attacks

1,069,011 0.1 109,249
(living up to 25 miles from the Gaza Strip)

5
Civilians under moderate exposure to rocket attacks

4,960,469 0.06 304,556
(living up to 25–50 miles from the Gaza Strip)

6
Indirectly affected communities

3,433,286 0.02 70,714
(living more than 50 miles from the Gaza Strip)

Total 520,278

The arrival rate data are drawn from the Home Front Command’s Information and

Knowledge Center and two major Trauma and Resiliency Centers. Figure 8 shows the

monthly arrival rate from October 7, 2023, to September 2024. Notably, the rate on October

7 was 500% higher than the pre-event average.

Due to the intensity of the event and the ongoing war, the Surge Phase in this case spans

the first year, during which arrival rates remain extremely high and variable. Stabilization

occurs toward the last two months, marking the start of the Recovery Phase at the begin-

ning of the second year. This phase continues until all queues are cleared, after which the

Long-Term Care Phase begins.

The service consists of a series of therapy sessions aimed at trauma processing and

coping. Session length is determined at treatment initiation, typically ranging from 12 to
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Figure 8 Monthly arrival rate from October 2023 to September 2024.
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24 sessions depending on exposure severity (Kar 2011). For instance, PTSD from terrorist

attacks typically requires 20–24 sessions, while evacuees facing complex trauma may need

16–20 sessions (Paunovic and Öst 2001). Accordingly, we use a 24-session series for Class 1,

20 sessions for Classes 2 and 3, 16 for Class 4, and 12 for Classes 5 and 6.

Group sizes follow standard clinical practice: 5 participants for Classes 1–3 and 8 for

Classes 4–6 (Yalom and Leszcz 2020, Dueweke et al. 2022). The probability of requiring

follow-up individual therapy after group sessions is set to 50% for Classes 1–3 and 20% for

Classes 4–6, based on empirical studies of group therapy effectiveness (Daley et al. 1983,

Yalom and Leszcz 2020, Dueweke et al. 2022).

Treatment cost savings and abandonment costs were estimated from psychiatric and

economic literature on PTSD. This literature distinguishes between civilian and mili-

tary populations (Davis et al. 2022), incorporates socio-demographic factors (Priebe et al.

2009), and includes economic evaluations of PTSD treatments (von der Warth et al. 2020,

Watkins et al. 2018). For example, the total excess economic burden of PTSD in the U.S.

is estimated at $18,640 for civilians and $25,684 for military personnel (Davis et al. 2022).

Based on this, we assign values of $26,000 for Classes 1 and 3, and $24,000, $22,000,

$20,000, and $18,000 for Classes 2, 4, 5, and 6, respectively.

Finally, estimates for no-show and dropout rates, and their associated costs, are drawn

from prior empirical studies. The Veterans Health Administration reports an average no-

show rate of 18% in mental health clinics (Milicevic et al. 2020), while the premature

dropout rate is estimated at 11.7% (Xaba et al. 2024, Fenger et al. 2011).

Using these parameters as well as a daily arrival rate over a five-year period beginning

on October 7, 2023, we evaluate the system’s performance across both the surge and
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recovery phases. Specifically, we implemented the multi-class extension policies developed

in Appendix C in a simulation model over both phases by dynamically prioritizing the

classes and channels according to their respective indices. For each policy, we computed

the evolution of queue lengths over time for each class, identified when the recovery phase

ends, and evaluated the long-run average cost savings.

Figure 9 illustrates the queue lengths of each class under the P rule as well as under

an adjusted version of the cµ/θ rule (Atar et al. 2004). To ensure a fair comparison, we

adapted the standard cµ/θ rule to account for the unique features of our model, such as

group therapy and dropouts. In particular, the adjusted cµ/θ rule prioritizes the classes

and channels according to the following index for Class i and Channel j:

ri,j +
ci,j

θi,jmi,j

(γi,j +µi,j) ,

where ri,j and ci,j are the generalized cost savings and holding costs, as defined in (C.3).

Note that both scheduling policies are implemented dynamically: servers are assigned to

channels and customers only when there is demand, and available servers prioritize across

channels and customer classes based on their indices.

The key difference between this policy and ours lies in the coordination between channels

embedded in the P rule. Specifically, for Classes 1–3, the P rule prioritizes the individ-

ual channel over the group channel (i.e., Ps > Pm). As a result, the indices for these

classes—and the corresponding prioritization and capacity allocations—are determined

jointly across both channels to ensure that patients requiring follow-up individual care are

accommodated. In contrast, the adapted cµ/θ rule treats each channel separately, prior-

itizing patients within each one independently. This coordination in the P rule leads to

significant performance differences. With the P rule, the recovery phase concludes approx-

imately six months earlier than with the adjusted cµ/θ rule, the total queue length over

the five-year period is reduced by 31%, and the total cost savings are 52% higher.

8. Concluding Remarks

This study addresses the operational challenges posed by MTEs, highlighting the need for

timely and effective mental health interventions to mitigate PTSD and related conditions

that affect large populations.
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Figure 9 Queue length for each class under the P rule and the adjusted cµ/θ rule over a five-year period.
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We analyze the coordination between group and individual therapy across the Surge,

Recovery, and Long-Term Phases of MTEs and develop cost-effective policies for priori-

tizing and allocating resources. Our model captures key real-world complexities, including

no-shows, dropouts, and referrals from group to individual care.

Through a case study, we illustrate how the proposed framework can inform concrete

operational decisions in realistic settings. In particular, we show that policies guided by

the P rule lead to faster system recovery, shorter wait times, and substantial cost savings

relative to existing benchmarks. These improvements go beyond theoretical value—they

demonstrate how operational models can enhance the efficiency and equity of mental health

systems during prolonged crises.

Overall, our findings emphasize the critical role of planning and coordination—especially

the dynamic balancing of both group and individual therapy—in building system resilience

and improving patient outcomes following mass trauma. These insights can help policy-

makers and practitioners design more scalable and responsive mental health services in

preparation for future MTEs.

Further research is warranted. A promising direction involves low-intensity “waitlist

treatment” delivered by peer supporters or lay counselors, which can offer accessible, scal-

able PTSD care and reduce the need for intensive services (Forneris et al. 2013, Levin et al.

2022). In the near future, such support may be delivered by virtual therapists or AI tools

(e.g., chatbots) to provide immediate psychological care, bridge accessibility gaps, and

assist in crisis intervention (Omarov et al. 2023). While these approaches require initial
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investment in training and coordination, they offer potential to extend limited resources

and improve access for at-risk populations.
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Appendices

Appendix A: Excluding Irregular Boundary Behaviors in Section 5

Recall the transient optimization problem in (9). We begin by excluding irregular boundary behaviors where

state constraints (i.e., non-negativity of queue lengths) hold tightly. One such challenging boundary behavior

is known as chattering, where the trajectory qj(t), for j ∈J , oscillates infinitely fast between zero and positive

values (Hu et al. 2022). Specifically, a time point t̃ is called a chattering point of the state trajectory qj if

qj(t̃) = 0 and for any δ > 0, there exist times s′ and s′′ ∈ (t̃− δ, t̃+ δ) such that qj(s
′) > 0 and qj(s

′′) = 0.

An interval is referred to as a chattering interval if any of its sub-intervals contains at least one chattering

point.

We next prove that it suffices to focus on trajectories that avoid both chattering points and chattering

intervals.

Lemma A.1 (excluding irregular boundary behaviors). For the transient optimal control problem

(9), we can assume that the state trajectories are free of chattering behavior without compromising optimality.

Appendix B: Additional Numerical Results

B.1. Additional Numerical Results for Section 5

In this section we use stochastic simulation to assess the performance of the recovery-based P rule. Table 2

provides a comparison between the fluid solution, obtained by solving (9), and the average simulation results,

conducted with 1500 replications for each initial condition.

The results indicate that the difference between the optimal fluid objective and the average transient cost

savings in the stochastic model is very small across all cases and is especially small when the traffic intensity

is high and no priority switching occurs.

Table 2 Comparison between fluid solution and simulation results for different initial conditions. The

parameters are as in Figure 5.

ρ Initial conditions Pm >Ps Pm <Ps

(qm(0), qs(0)) Fluid Solution Simulation Difference Fluid Solution Simulation Difference

0.45

(100, 400) 467,590 467,096 0.11% 725,340 723,699 0.23%

(250, 450) 600,860 597,916 0.49% 503,250 500,784 1.34%

(400, 500) 613,420 599,791 2.22% 526,840 515,135 0.36%

(600, 600) 614,840 611,000 0.62% 541,440 538,058 1.26%

(400, 200) 646,420 638,215 1.27% 554,790 547,748 2.50%

1

(100,400) 672,500 671,962 0.08% 1,045,400 1,043,936 0.14%

(250,450) 682,770 680,927 0.27% 1,012,000 1,002,993 0.89%

(400,500) 682,260 674,209 1.18% 978,450 976,395 0.21%

(600,600) 667,060 665,059 0.30% 924,380 917,447 0.75%

(400,200) 722,240 715,451 0.94% 1,056,600 1,039,060 1.66%
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B.2. Additional Numerical Results for Section 6

Table 3 presents a comparison of the performance of four different policies against the optimal policy, which is

derived by solving (11) for various scenarios. The four policies include: the surge-based P rule, the recovery-

based P rule developed in Section 5 (where the P rule is applied above the switching curve and the inverse

P rule below it) as well as both the P rule and its inverse (where priorities are switched).

Table 3 cost savings comparison (in percentages) of the P rule against the fluid value function for the joint

Surge and Recovery phases. The parameters for the classes are as in Figure 5.

Arrival rate
(Figure 6)

Case P rule
Inverse
P rule

Recovery-based
policy

Surge-based
policy

Scenario 1
Pm >Ps 4.04% 12.84% 1.22% 0.21%

Pm <Ps 2.28% 6.45% 3.64% 0.14%

Scenario 2
Pm >Ps 4.73% 8.48% 2.05% 0.52%

Pm <Ps 2.35% 3.87% 1.57% 0.28%

Scenario 3
Pm >Ps 3.92% 15.44% 1.02% 0.35%

Pm <Ps 1.88% 5.68% 3.85% 0.40%

The results show that, while the recovery-based P rule performs reasonably well during the Surge Phase,

the surge-based P rule consistently outperforms the other policies across all scenarios and achieves near-

optimal performance.

Appendix C: The Multiple-Class Extension

In some cases of MTEs, patients may experience varying levels of exposure or intensity. Consequently,

the exposed population can be categorized into different classes based on the intensity, context, and

type of traumatic exposure they endured. Treatment cost savings, for example, may vary across classes

(Grasser and Javanbakht 2019), depending on factors such as the type of traumatic exposure.

In this section, we extend the policies proposed across the three response stages to accommodate I classes

of patients, denoted by I = {1, . . . , I}. Each class is processed through a group channel, the size of which

depends on the class, followed by individual channels, as illustrated in Figure C.1.

To incorporate distinct parameters for each class and channel, we introduce a subscript i for all parameters.

For example, µi,j denotes the service rate of Class i patients in Channel j, and mi,m represents the required

number of servers for Class i in the group channel (i.e., the group size of Class i is 1/mi,m).

Recall that both mi,m and mi,s can take any positive real value. In practice, these are typically rational

numbers, determined by the therapist-to-patient ratio. For instance, mi,m = 1/5 and mj,m = 1/10 indicate

that each Class i patient requires one-fifth of a server, while each Class j patient requires one-tenth of a

server. Equivalently, a Class i group consists of five participants, whereas a Class j group consists of ten

participants.

To ensure that groups remain homogeneous within their respective classes, we can adjust the unit of

measurement. For example, one-tenth of a server can be redefined as a unit of service capacity. In this case,

we set mi,m = 2, mj,m = 1, and mi,s =mj,s = 10.
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Figure C.1 Model illustration with multiple classes of patients.
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C.1. Long-Term Care Phase

In the Long-Term Phase, we assume that each customer class arrives according to a homogeneous Poisson

process with rate λi, i ∈ I. Additionally, we retrieve the class index, i to the subscript of each class-related

parameter. The extension of (4) to I classes of customers yields the following linear program:

max
z̄

∑

i∈I

∑

j∈J

Pi,j z̄i,j

s.t. 0≤ z̄i,m ≤
λi

miµi,m + γi,m

, i∈ I,

0≤ z̄i,s ≤
miµi,mpi(mi)

µi,s + γi,s

z̄i,m, i∈ I,

∑

i∈I

∑

j∈J

z̄i,j ≤N,

(C.1)

where

Pi,m = ri,m +
ci,m

θi,mmi,m

(γi,m +µi,m)−
pici,s

θi,smi,m

µi,m,

Pi,s := ri,s +
ci,s

θi,smi,s

(µi,s + γi,s) .
(C.2)

and the generalized cost savings and holding cost are

ri,j :=
1

mi,j

(

bi,jµi,j −hd
i,jγi,j

)

, ci,j := hi,j +αi,jθi,j . (C.3)

The complexity of scheduling multiple classes in this setting arises from the dependency in resource

allocation between both channels, as the group channel feeds the individual channel. Specifically, when

Pi > Pi,m for some Class i, the resource allocation must be coordinated between both channels: to provide

the individual channel with its maximal possible allocation, the group channel needs sufficient resources.

Therefore, optimal scheduling requires jointly considering both channels of each class. Conversely, when

Pi <Pi,m, both channels can be scheduled separately.

Proving the scheduling optimality in the multiple-class case requires following the analysis used to prove

Theorem 1. This involves first proving that under the suggested scheduling rule, the fluid approximation
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converges to a globally asymptotically stable equilibrium point, and then proving that the optimal solution

to the long-run cost savings maximization problem in the multi-class case is the globally asymptotically

stable equilibrium. This approach, however, becomes prohibitively tedious with too many scenarios to con-

sider. Therefore, we provide an algorithm that extends the essence of the single-class rule for setting the

prioritization among classes and channels. Note that for a given set of parameters, this algorithm needs to

be run once.

First, we introduce the weighted average index for each class, which is necessary for setting the scheduling

policy (see Section C.1.1 for an explanation regarding this term):

P̄i =
µi,s + γi,s

µi,s + γi,s + piµi,mmis

Pi,m +
piµi,mmi,s

βi,sµi,s + γi,s + piµi,mmi,s

Pi,s. (C.4)

Note that if multiple classes share the same P index, multiple optimal scheduling policies may prevail;

this can complicate the analysis. For the sake of simplicity, we assume that all indices are unique.

The following algorithm uses the sorted set S, which includes the indexes of each class to determine the

priority among classes.

Algorithm 1 (Multi-class scheduling with group and individual channels)

1. Set S =∅

2. For each Class i, i∈ I:

(a) If P̄i <Pi,m, then S ←S ∪{Pi,m,Pi}

(b) Otherwise, S ←S ∪
{

P̄i

}

3. Sort the set S in a decreasing order

4. Replace the P̄i’s in S with {Pi,Pi,m}

5. Return S

The prioritization of classes will be done according to their order in the sorted set S. The algorithm shares

the same principles as the single-class rule: if for a specific class the group channel’s index is higher than

the individual channel’s index, then the prioritization is set separately to the group/individual channels

according to their Pm,Ps indexes. If, however, the group channel’s index is smaller than the individual

channel’s index, both channels are first prioritized jointly according to their integrated P̄i index, and their

allocated resources are set jointly as in the second case of Theorem 1.

C.1.1. The Weighted Average P̄. The joint index P̄ in (C.4) incorporates the group and individual

channels. Intuitively, when Pk,s >Pk,m for some Class k, we would tend to prioritize the individual channel

over the group one. Since the latter is the feeding source of the former, enough resources need to be allocated

to the group channel to assure that

z̄k,s =
pkµk,mmk,s

(µk,s + γk,s)mk,m

z̄k,m.

By substituting z̄k,s in the objection function of (C.1), we get

max
z̄

∑

i∈I
i 6=k

[Pi,mz̄i,m +Pi,sz̄i,s] +

(

Pk,m +
pkµk,mmk,s

(µk,s + γk,s)mk,m

Pk,s

)

z̄k,m. (C.5)
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When the resource constraint is active (i.e.,
∑

i∈I
[z̄i,m + z̄i,s] =N), we have

z̄k,m =
µk,s + γk,s

µk,s + γk,s + pkµk,mmk,s






N −

∑

i∈I
i 6=j

[z̄i,m + z̄i,s]






,

which in turn is plugged in back into (C.5) to give the following objective function

max
z̄

∑

i∈I
i 6=k

[Pi,mz̄i,m +Pi,sz̄i,s] + P̄k






N −

∑

i∈I
i 6=k

[z̄i,m + z̄i,s]






.

Now it is evident that resources need to be allocated jointly for both Class j’s group and individual channels

according to their weighted average index, P̄j .

C.1.2. Managing Idleness. When implementing the P rule in stochastic systems, idleness may occur

if there are not enough patients to meet the required group size. For instance, prioritizing a class with a

group size of five when only three such patients are available would leave two-fifths of the server’s capacity

idle. This idleness, especially in small systems, can lead to sub-optimal performance (Baron et al. 2014,

Zychlinski et al. 2023, Grosof and Harchol-Balter 2023). The effect is more pronounced in small systems,

since, for example, one idle server out of three is significant, while one idle server out of 3000 is negligible.

It is, therefore, crucial to properly manage policy-induced idleness; that is, admitting a different class

group or an individual patient, while anticipating the arrival of two more patients from the first class, could

increase system throughput and overall performance. A natural way to mitigate policy-induced idleness is

to add a penalty term for incurred idleness when evaluating a scheduling rule. Specifically, we introduce a

tuning parameter Γ≥ 0 to penalize priority-induced idleness, resulting in the same optimization problem as

(C.1) with the following adjusted objective function:

max
z̄,m

∑

i∈I

∑

j∈J

Pi,j z̄i,j +Γ
∑

i∈I

∑

j∈J

z̄i,j =
∑

i∈I

∑

j∈J

P̃i,j z̄i,j ,

where the Γ-adjusted P indices are P̃i,j =Pi,j +Γ.

The additional term in the objective function increases the number of utilized servers (or equivalently,

minimizes server idleness). The two extreme cases are: (i) when Γ= 0, we prioritize according to the original

P rule, and (ii) when Γ is large enough (Γ>
∑

i∈I

∑

j∈J
Pi,j), the primary objective becomes maximizing

server utilization. That is, among all policies that minimize idleness, we choose the one that maximizes the

P index. For intermediate values of Γ, different levels of idleness may occur.

The Γ parameter in the Γ-adjusted P index rule provides flexibility in balancing the immediate cost

savings-increase rate with the priority-induced idleness. The general intuition for setting Γ is that in large

or lightly loaded systems, more weight should be placed on the P indices (through a smaller or even zero Γ).

Conversely, in small or critically loaded systems, greater emphasis should be placed on minimizing idleness

(through a larger Γ). The solution approach incorporating idleness is the same as the P index rule, but with

the Γ-adjusted P indices replacing the original P indices.
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C.2. Recovery and Surge Phase

The transient optimization problem in the multiple-class case is the following linear programming:

max
z,q

∫ τ

0

∑

i∈I

∑

j∈J

[ri,jzi,j(t)− ci,jqi,j(t)] dt

s.t. q̇i,m(t) = λi− θi,mqi,m(t)− (µi,m + γi,m) zi,m(t)/mi,m, t≥ 0

q̇i,s(t) = pµi,mzi,m(t)/mi,m− θi,sqi,s(t)− (µi,s + γi,s) zi,s(t)/mi,s, t≥ 0
∑

i∈I

∑

j∈J

zi,j(t)≤N, zi,j(t)≥ 0, qi,j(t)≥ 0, i∈ I, j ∈J , t≥ 0.

(C.6)

By numerically solving (C.6), we observe that, similar to the single-class case, the P-rule is optimal when

the total queue lengths are large. Unlike the single-class case, however, where a single priority switch occurs

when the total queue lengths become small, allowing us to characterize the switching curve, in the multi-class

case, each class switches priority at different times. These switching times depend on specific relationships

between the class parameters and initial conditions. Establishing these properties in a rigorous way for the

multi-class case requires complex and non-trivial derivations.

Fortunately, we find that, analogous to the single-class case, when the system is highly loaded, as is typical

during MTEs — the main focus of this research — there is no priority switching. The optimal solution adheres

to the P-rule throughout the entire horizon. Moreover, even when the system is moderately loaded, following

the P-rule throughout the horizon results in performance that is reasonably close to optimal. Therefore, for

multi-class scenarios, we recommend adhering to the P-rule throughout the recovery and surge phases.

Table 4 presents a simulation-based performance comparison in a two-class setting across various scenarios,

including the Recovery Phase and the combined Recovery and Surge Phases. The percentages in parentheses

indicate the optimality gap relative to the optimal fluid value function. For the fluid policy, we implemented

in the simulation the optimal solution obtained by solving (C.6). While this policy performs very close

to optimal, it is more complex to implement, as it requires tracking the solution of (C.6), which may be

challenging – particularly when multiple classes and switches are involved. In contrast, following the P rule

is straightforward and easy to implement. Moreover, the results show that the deviation of the P rule from

the optimal policy is small—within 3.5%.

Appendix D: Proofs of Analytical Results

Proof of Theorem 1:

We begin the proof by the following definition. Considering an autonomous differential equation:

q̇(t) = f(q(t)) with q(0) = q0. (D.7)

Suppose there exists an equilibrium point q̄ so that f(q̄) = 0. Then, q̄ is globally asymptotically stable if for

any initial condition q0, limt→∞ ||q(t)− q̄||= 0, where || · || is the Euclidean norm.
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Table 4 Cost savings comparison (in percentages) relative to the optimal fluid value function during the joint

Surge and Recovery phases. The parameters for the classes are as described in Figure 5, with Class 1 having

Pm >Ps and Class 2 having Pm <Ps.

Recovery Phase Surge and Recovery Phases
(q1,m(0), q2,m(0))
(q1,s(0), q2,s(0))

Fluid policy P rule
Arrival rate
(Figure 6)

Fluid policy P rule

(100,400)
(400,600)

835,808 (0.55%) 818,999 (2.55%)
λ1(t) Scenario 1
λ2(t) Scenario 2

1,361,235 (0.48%) 1,352,070 (1.15%)

(400,600)
(100,400)

778,543 (0.62%) 761,230 (2.83%)
λ1(t) Scenario 2
λ2(t) Scenario 1

1,832,624 (0.66%) 1,784,844 (3.25%)

(350,300)
(300,400)

749,678 (0.81%) 737,585 (2.41%)
λ1(t) Scenario 1
λ2(t) Scenario 1

1,853,810 (0.52%) 1,810,949 (2.82%)

(300,400)
(350,300)

719,809 (0.97%) 703,382 (3.23%)
λ1(t) Scenario 2
λ2(t) Scenario 2

1,213,904 (0.76%) 1,202,650 (1.68%)

For the purpose of the proof, it is helpful to explicitly rewrite (2) as follows:

max
q,z

lim inf
T→∞

1

T

∫ T

0

[rmzm(t)− cmqm(t)+ rszs(t)− csqs(t)] dt

s.t. q̇m(t) = λ− θmqm(t)− (µm + γm) zm(t)/mm, t≥ 0

q̇s(t) = pµmzm(t)/mm− θsqs(t)− (µs + γs) zs(t)/ms, t≥ 0

zm(t)+ zs(t)≤ 1, t≥ 0;

qm(t), qs(t), zm(t), zs(t)≥ 0, t≥ 0.

(D.8)

In the first part of the proof, we establish that by following the suggested P rule for the system dynamics in

(D.8) from any initial condition, and for θm, θs > 0, the globally asymptotically stable equilibria, z̄ = (z̄m, z̄s)

are as in Equations (6) and (7), and the equilibrium queue lengths q̄= (q̄m, q̄s), are given by

q̄m = 1
θm

(

λ− (µm + γm) z̄m
mm

)

, and q̄s =
1
θs

(

pµm
z̄m
mm
− (µs + γs)

z̄s
ms

)

. (D.9)

In the second part of the proof, we show that the solution of (4), z̄∗, and the corresponding q̄∗ constitute

the globally asymptotically stable equilibrium established in the first part of the proof.

Part 1. This part is based on the construction of Lyapunov functions.

• If Pm >Ps: We consider the three sub-cases summarized in Table 5. For each sub-case we prove that

the globally asymptotically stable equilibrium q̄ = (q̄m, q̄s) is. In this case, the P rule gives strict priority to

the group channel over the individual one. In this case, there could be three options. It what follows, we

analyze each such option.

—Sub-case I: λmm

µm+γm
+ pµmms

(µs+γs)mm
N ≤N . q̄ = (0,0).

We consider the Lyapunov function

V (q) =
mm

µm + γm

|qm− q̄m|+
ms

µs + γs

|qs− q̄s|,

where the equilibrium point q̄ = (0,0), and show its asymptotic stability. To this end, we first verify that

V (q̄) = 0 and V (q)→∞ as ‖q‖→∞. Then, we show that ∇qV (q)sTf(q)< 0 for q 6= q̄, where q̇(t) = f(q(t)),

as defined in (D.7).
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∗ When qm(t)> 0, all resources are allocated to the group channel. Specifically, the system dynamics

in (D.8) are as follows:
{

q̇m(t) = λ− 1
mm

(µm + γm)N − θmqm(t);

q̇s(t) =
1

mm
pµmN − θsqs(t).

We have

∇qV (q)T f(q) =
mm

µm + γm

(

λ− 1
mm

(µm + γm)N − θmqm(t)
)

+
ms

µs + γs

(

1
mm

pµmN − θsqs(t)
)

=
λmm

µm + γm

−N +
pµmms

(µs + γs)mm

N −
θmqm(t)mm

µm + γm

−
θsqs(t)ms

µs + γs

< 0,

where the inequality follows from the sub-case’s condition and the assumption that θ > 0.

∗ When qm(t) = 0 and qs(t)> 0, the required resources to the group channel are allocated, and

any leftover resources are allocated to the individual channel. The system dynamics are, therefore,
{

q̇m(t) = λ− 1
mm

(µm + γm) z̃m;

q̇s(t) =
1

mm
pµmz̃m−

1
ms

(µs + γs) (N − z̃m)− θsqs(t),

where z̃m =
(

λmm

µm+γm
∧N

)

.

We have,

∇qV (q)T f(q) =
mm

µm + γm

(

λ− 1
mm

(µm + γm) z̃m

)

+
ms

µs + γs

(

1
mm

pµmz̃m−
1

ms
(µs + γs) (N − z̃m)− θsqs(t)

)

=
λmm

µm + γm

−N +
pµmms

(µs + γs)mm

z̃m−
θsqs(t)ms

µs + γs

< 0,

where the first inequality follows from the fact that z̃m ≤N ; the last inequality follows from the sub-case’s

condition and the assumption that θ > 0.

—Sub-case II: λmm

µm+γm
≤N < λmm

µm+γm
+ pλms

(µs+γs)mm
. q̄ =

(

0, 1

θs

(

λp−
(µs+γs)

ms

(

N − λmm

µm+γm

)))

.

We consider the Lyapunov function

V (q) = |qm− q̄m|+ |qs− q̄s|,

where the equilibrium point q̄, and show its asymptotic stability.

∗ When qm(t)≥ q̄m, qs(t)≥ q̄s, and q(t) 6= q̄, the system dynamics are:

{

q̇m(t) = λ− 1
mm

(µm + γm) λmm

µm+γm
− θmqm(t) =−θmqm(t);

q̇s(t) = λp− 1
ms

(µs + γs)
(

N − λmm

µm+γm

)

− θsqs(t).

We, therefore, have

∇qV (q)T f(q) = λp− 1
ms

(µs + γs)

(

N −
λmm

µm + γm

)

− θmqm(t)− θsqs(t)

<λp− 1
ms

(µs + γs)

(

N −
λmm

µm + γm

)

− θmq̄m− θsq̄s = 0,

where the inequality follows from the fact that qm(t)≥ q̄m, qs(t)≥ q̄s, and q(t) 6= q̄, while the equality arises

from the conditions of this sub-case.
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∗ When qm(t)< q̄m, qs(t)< q̄s, and q(t) 6= q̄, we get the same ∇qV (q)T f(q) as in the previous

case with a negative sign; namely,

∇qV (q)T f(q) =−λp+ 1
ms

(µs + γs)

(

N −
λmm

µm + γm

)

+ θmqm(t)+ θsqs(t)

<−λp+ 1
ms

(µs + γs)

(

N −
λmm

µm + γm

)

+ θmq̄m + θsq̄s = 0,

where the inequality follows from the fact that qm(t)≥ q̄m, qs(t)≥ q̄s, and q(t) 6= q̄. The last equality follows

from the conditions of this sub-case.

The other two cases for the different relations between qs,i(t) and q̄s,i are handled in exactly the same way

and are therefore omitted.

—Sub-case III. N < λmm

µm+γm
. q̄ =

(

λ−

(µm+γm)
mm

N

θm
, pµm

θsmm
N

)

. We consider the Lyapunov function

V (q) = |qm− q̄m|+ |qs− q̄s|,

where the equilibrium point q̄, and show its asymptotic stability. Since the conditions V (q̄) = 0 and V (q)→∞

as ‖q‖→∞ can easily be verified, we focus on showing that ∇qV (q)sTf(q)< 0 for q 6= q̄.

∗ When qm(t)≥ q̄m, qs(t)≥ q̄s, and q(t) 6= q̄, all of the resources are allocated to the group

channel. The system dynamics are therefore,
{

q̇m(t) = λ− (µm+γm)

mm
N − θmqm(t);

q̇s(t) =
pµm

mm
N − θsqs(t);

We have

∇qV (q)T f(q) = λ−
(µm + γm)

mm

N − θmqm(t)+
pµm

mm

N − θsqs(t)

<λ−
(µm + γm)

mm

N +
pµm

mm

N − θmq̄m− θsq̄s = 0,

where the inequality follows from the fact that qm(t)≥ q̄m, qs(t)≥ q̄s, and q(t) 6= q̄. The last equality follows

from the conditions of this sub-case.

∗ When qm(t)< q̄m, qs(t)< q̄s, and q(t) 6= q̄, we have,

∇qV (q)T f(q) =−λ+
(µm + γm)

mm

N + θmqm(t)−
pµm

mm

N + θsqs(t)

<−λ+
(µm + γm)

mm

N −
pµm

mm

N + θmq̄m + θsq̄s = 0,

where the inequality follows from the fact that qm(t) < q̄m, qs(t) < q̄s, and q(t) 6= q̄. The last equality

follows from the conditions of this sub-case.

The other two cases for the different relations between qs,i(t) and q̄s,i are handled in exactly the same way

and are therefore omitted.

• If Pm <Ps: We consider the two sub-cases described in Table 6. For each sub-case we prove what the

globally asymptotically stable equilibrium q̄= (q̄m, q̄s) is. To this end, we construct a Lyapunov function for

each case and demonstrate the global asymptotic stability of the equilibrium point.
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—Sub-case I. λmm

µm+γm
+ λpms

(µs+γs)mm
≤N . q̄ = (0,0). We consider the Lyapunov function

V (q) =
pµmm+µs

µmmµs

|qm− q̄m|+
ms

µs + γs

|qs− q̄s|,

where the equilibrium point q̄= (0,0), and show its asymptotic stability.

∗ When qm(t)> 0 and qs(t) = 0, all of the resources are allocated to the group and individual

channels. Specifically, the system dynamics in (D.8) are as follows:
{

q̇m(t) = λ− (µm+γm)(µs+γs)

mm(µs+γs)+pµmms
N − θmqm(t);

q̇s(t) =
p(µs+γs)µm

mm(µs+γs)+pµmms
N − pµm(µs+γs)

mm(µs+γs)+pµmms
N = 0.

We have

∇qV (q)T f(q) =
mm (µs + γs)+ pµmms

(µm + γm) (µs + γs)

(

λ−
(µm + γm) (µs + γs)

mm (µs + γs)+ pµmms

N − θmqm(t)

)

=
λmm (µs + γs)+λpµmms

(µm + γm) (µs + γs)
−N −

mm (µs + γs)+ pµmms

(µm + γm) (µs + γs)
θmqm(t)

=
λmm

µm + γm

+
λpµmms

(µm + γm) (µs + γs)
−N −

mm (µs + γs)+ pµmms

(µm + γm) (µs + γs)
θmqm(t)

≤
λmm

µm + γm

+
λpms

(µs + γs)
−N −

mm (µs + γs)+ pµmms

(µm + γm) (µs + γs)
θmqm(t)< 0,

where the first inequality follows from the fact that µm/ (µm + γm) < 1, and the second inequality follows

from the sub-case’s condition and the assumption that θ > 0.

—Sub-case II. λmm

µm+γm
+ λpms

(µs+γs)mm
>N . q̄ =

(

1

θm

(

λ− (µm+γm)(µs+γs)

pµmms+mm(µs+γs)
N
)

,0)
)

. The Lyapunov

functions we use is

V (q) = |qm− q̄m|+ |qs− q̄s|,

where the equilibrium point q̄, and show its asymptotic stability.

∗ When qm(t)≥ q̄m, qs(t)≥ q̄s, and q(t) 6= q̄, all of the resources are allocated to the group

channel. The system dynamics are therefore,
{

q̇m(t) = λ− (µm+γm)(µs+γs)

pµmms+mm(µs+γs)
N − θmqm(t);

q̇s(t) =
pµm(µs+γs)

pµmms+mm(µs+γs)
N − pµm(µs+γs)

pµmms+mm(µs+γs)
N − θsqs(t) =−θsqs(t);

We have

∇qV (q)T f(q) =

(

λ−
(µm + γm) (µs + γs)

pµmms +mm (µs + γs)
N

)

− θmqm(t)− θsqs(t)

<

(

λ−
(µm + γm) (µs + γs)

pµmms +mm (µs + γs)
N

)

− θmq̄m− θsq̄s = 0,

where the inequality follows from the fact that qm(t)≥ q̄m, qs(t)≥ q̄s, and q(t) 6= q̄. The last equality follows

from the sub-case conditions.

∗ When qm(t)< q̄m, qs(t)< q̄s, and q(t) 6= q̄, we have,

∇qV (q)T f(q) =−

(

λ−
(µm + γm) (µs + γs)

pµmms +mm (µs + γs)
N

)

+ θmqm(t)+ θsqs(t)

<−

(

λ−
(µm + γm) (µs + γs)

pµmms +mm (µs + γs)
N

)

+ θmq̄m + θsq̄s = 0,

where the inequality follows from the fact that qm(t)< q̄m, qs(t)< q̄s, and q(t) 6= q̄, and the last equality

follows from the sub-case conditions.
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Part 2. Recall the long-run profit maximization problem (4). Let z̄∗ = (z̄∗
m, z̄∗

s ) and q̄∗ = (q̄∗m, q̄∗s ) denote

its solution (i.e., long-run average resource allocation and corresponding queue length for each channel). To

prove the optimality of the P rule, it suffices to show that z̄∗ and q̄∗ constitute the globally asymptotically

stable equilibrium established in Part 1 of this proof. We, therefore, consider the same cases as in Part 1,

and present the optimal solution z̄∗ and q̄∗.

• If Pm >Ps: In this case, the P rule gives strict priority to the group channel. We consider the three

sub-cases shown in Table 5.

Table 5 Optimal solution – Pm >Ps.

Sub-case (z̄∗
m, z̄∗

s ) (q̄∗s , q̄
∗
s )

I. λmm

µm+γm
+ pµmms

(µs+γs)mm
N ≤N

(

λmm

µm+γm
, λpµmms

(µs+γs)(µm+γm)

)

(0,0)

II. λmm

µm+γm
≤N < λmm

µm+γm
+ pλms

(µs+γs)mm

(

λmm

µm+γm
,N − λmm

µm+γm

) (

0, 1
θs

(

λp− (µs+γs)

ms

(

N − λmm

µm+γm

)))

III. N < λmm

µm+γm
(N,0)

(

λ−
(µm+γm)

mm
N

θm
, pµmN

θsmm

)

Except for sub-case I, where there are enough resources to serve all patients, the two other

sub-cases prioritize the group channel first and then the individual channel. This is align

with the P rule prioritization in this scenario.

• If Pm <Ps: In this case, the P rule gives priority to the individual channel and

allocates sufficient resources to the group channel to achieve that. We consider the two

sub-cases described in Table 6.

z̄m =
λmm

µm + γm
∧

(µs + γs)mmN

mm (µs + γs)+ pµmms

, z̄s =
pµmms

(µs + γs)mm

z̄m.

Table 6 Optimal solution – Pm <Ps.

Sub-case (z̄∗
m, z̄∗

s ) (q̄∗m, q̄∗s )

I. λmm

µm+γm
+ λpms

(µs+γs)mm
≤N

(

λmm

µm+γm
, λpµmms

(µs+γs)(µm+γm)

)

(0,0)

II. N < λmm

µm+γm
+ λpms

(µs+γs)mm

(

(µs+γs)mmN

mm(µs+γs)+pµmms
, pµmmsN

mm(µs+γs)mm+pµmms

) (

1
θm

(

λ− (µm+γm)(µs+γs)N

pµmms+mm(µs+γs)

)

,0)
)

In sub-case I, there are enough resources to treat all patients. In sub-case II, however,

resources are allocated to both channels, ensuring the group channel receives enough

resources to allow the maximum allocation to the individual channel. This is also in line

with the P rule and concludes the proof. Q.E.D.
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Proof of Lemma A.1: We prove the lemma by demonstrating that the cost difference between a tra-

jectory with chattering and one without is negligible. This shows that any admissible control policy that

results in a chattering interval can be replaced by a cost-equivalent policy that yields chattering-free state

trajectories. Consequently, it is optimal to consider only state trajectories without chattering when solving

the transient optimal control problem in (9).

The general structure of the proof is similar to Proposition 1 in Hu et al. (2022), however, our case

incorporates the group channel, treatment cost savings, dropouts and no-shows. Additionally, due to the

asymmetry of our system, we need to establish the optimality of chattering-free behavior for both classes

(Part I and Part II).

Part I. Consider an interval I1 := [0, ǫ], for some small ǫ > 0. The group channel starts this interval with

zero queue (qm(0) = 0) and is not allocated any resources throughout the interval. Following I1, we define

another interval I2 = (ǫ, ǫ+ ǫ′), where the group channel is allocated all resources and is emptied by the end

of I2. Let qs(0) = qs0, qs0 ∈ R+. Next, we compute the state trajectories and the associated cost over the

interval [0, ǫ+ ǫ′].

In the first interval I1, where t∈ [0, ǫ], the state trajectories evolve as:

qm(t) = λt+ o(ǫ),

qs(t) = qs0− t

[

qs0θs−
µs + γs

ms

N

]

+ o(ǫ).

At the end of I1, the queue lengths are:

qm(ǫ) = λǫ+ o(ǫ), qs(ǫ) = qs0− ǫ

[

qs0θs−
µs + γs

ms

N

]

+ o(ǫ).

Using these as initial conditions for the second interval, the state trajectories in I2, where t ∈ [ǫ, ǫ+ ǫ′]

evolve as:

qm(t) = qm(ǫ)+ (t− ǫ)

[

−θmqm(ǫ)+λ−
µm + γm

mm

N

]

+ o(ǫ),

qs(t) = qs(ǫ)+ (t− ǫ)

[

−θsqs(ǫ)+
µm + γm

mm

Np

]

+ o(ǫ).

By requiring that qm(ǫ′) = 0, we get that the time the group queue empties from its initial value qm(ǫ) is:

ǫ′ =
λǫ

−λ+ µm+γm

mm
N

+ o(ǫ).

The total cost savings over the two intervals is:

C =

∫ ǫ

0

rsNt dt+

∫ ǫ′

ǫ

rmNt dt−

∫ ǫ+ǫ′

0

[cmqm(t)+ csqs(t)] dt

In contrast, we now consider a single interval of length, ǫ+ ǫ′, with the same initial conditions, only now

instead of allowing qm to increase and then decrease to zero, we assign strict priority to the group channel,

maintaining q̃m at zero throughout the interval. The remaining resources are allocated to the individual

channel. Similarly, we characterize the state trajectory over this interval, where t∈ [ǫ, ǫ+ ǫ′] as:

q̃m(t) = 0,

q̃s(t) = qs0 + t

[

−qs0θs +
pλmm

µm + γm

−
µs + γs

ms

(

N −
λmm

µm + γm

)]

+ o(ǫ).
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The total cost savings in this case is:

C̃ =

∫ ǫ+ǫ′

0

[

rs

(

N −
λmm

µm + γm

)

t+ rm
λmmt

µm + γm

− cmqm(t)+ csqs(t)

]

dt

By comparing C and C̃, we obtain:

C − C̃ =
ǫ2

2(λ− µm+γm

mm
N)2

(

λ
(

csǫλ
(

qs0θ
2
s − θs

µm + γm

mm

Np
))

+ csN
(

(1+ ǫ(θs))λ−
µs + γs

ms

N
)

µs

− cm

(

ǫθmλ2 +λ
µm + γm

mm

N −N2

(

µm + γm

mm

)2
))

+
ǫ2

2






N






rs− rm +

rmλ2

(

−λ+ µm+γm

mm
N
)2






− rs

(

N −
λmm

µm + γm

)

(µm + γm)N
(

−λ+ µm+γm

mm

)

mm






= o(ǫ)

Moreover, at time ǫ+ ǫ′, we have qm(ǫ+ ǫ′) = q̃m(ǫ+ ǫ′) = 0, and qs(ǫ+ ǫ′)− q̃s(ǫ+ ǫ′) = o(ǫ).

Part II. Since the channels are asymmetric, we now verify the same conclusion hold when the queue

of the individual channel first increases and then empties. Specifically, consider an interval I1 := [0, ǫ], for

some small ǫ > 0. The individual channel starts this interval with zero queue (qs(0) = 0) and is not allocated

any resources throughout the interval. Following I1, we define another interval I2 = (ǫ, ǫ + ǫ′), where the

individual channel is allocated all resources and is emptied by the end of I2. Let qm(0) = qm0, qm0 ∈ R+.

Next, we compute the state trajectories and the associated cost over the interval [0, ǫ+ ǫ′].

In the first interval I1, where t∈ [0, ǫ], the state trajectories evolve as:

qm(t) = qm0 +

[

−θmqs0 +λ−
µm + γm

mm

N

]

t+ o(ǫ),

qs(t) =

[

µm + γm

mm

Np

]

t+ o(ǫ).

At the end of I1, the queue lengths are:

qm(ǫ) = qm0 +

[

−θmqs0 +λ−
µm + γm

mm

N

]

ǫ+ o(ǫ), qs(ǫ) =

[

µm + γm

mm

Np

]

ǫ+ o(ǫ).

Using these as initial conditions for the second interval, the state trajectories in I2, where t ∈ [ǫ, ǫ+ ǫ′]

evolve as:

qm(t) = qm(ǫ)+ (t− ǫ) [−θmqm(ǫ)+λ] + o(ǫ),

qs(t) = qs(ǫ)+ (t− ǫ)

[

−θsqs(ǫ)−
µs + γs

ms

N

]

+ o(ǫ).

By requiring that qs(ǫ
′) = 0, we get that the time the group queue empties from its initial value qs(ǫ) is:

ǫ′ =

µm+γm

mm
pǫ

µs+γs

ms

+ o(ǫ).

The total cost savings over the two intervals is:

C =

∫ ǫ

0

rmNt dt+

∫ ǫ′

ǫ

rsNt dt−

∫ ǫ+ǫ′

0

[cmqm(t)+ csqs(t)] dt
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In contrast, we now consider a single interval of length, ǫ+ ǫ′, with the same initial conditions, only now

instead of allowing qs to increase and then decrease to zero, we assign strict priority to the individual channel,

maintaining q̃s at zero throughout the interval. The remaining resources are allocated to the individual

channel. Similarly, we characterize the corresponding state trajectory over this interval, where t ∈ [ǫ, ǫ+ ǫ′]

as:

q̃m(t) = qm0− t

[

−qm0θm +λ−
(ms + γs)mmN

(µs + γs)mm + pµmms

]

+ o(ǫ),

q̃s(t) = 0.

The total cost savings in this case is:

C̃ =

∫ ǫ+ǫ′

0

[

rs

(

pµmmsN

(µs + γs)mm + pµmms

)

t+ rm

(

(ms + γs)mmN

(µs + γs)mm + oµmms

)

t− cmqm(t)+ csqs(t)

]

dt

Similar to part I, we get that C− C̃ = o(ǫ) as well as qs(ǫ+ ǫ′) = q̃s(ǫ+ ǫ′) = 0, and qm(ǫ+ ǫ′)− q̃m(ǫ+ ǫ′) =

o(ǫ).

Part III. In both parts I and II, we showed that the cost under a policy that increases and then decreases

one queue, and the cost under the strict priority rule keeping the queue at zero, differ by o(ǫ). Similarly,

the queue lengths at time ǫ+ ǫ′ under both policies differ by o(ǫ). For any interval of length L, dividing it

into O(L/ǫ) small triangular trajectories (where one queue increases for ǫ units then decreases to zero), each

incurs a cost difference of o(ǫ). Thus, the total cost difference between the two policies is o(ǫ)O(L/ǫ), which

tends to zero as ǫ→ 0 for fixed L.

Any chattering interval consists of infinitely many such triangular trajectories. Therefore, any control

policy π that causes chattering can be replaced by a cost-equivalent policy π̃, which holds the queue at zero

and coincides with π elsewhere. Q.E.D.
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