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The widespread prevalence of opioids has prompted governments to implement targeted interventions aimed

at reducing overdose mortality, with naloxone accessibility emerging as one of the most prominent policies.

Naloxone, a potent opioid antagonist, is highly effective in reversing overdoses, yet its expanded availability

introduces complex trade-offs, particularly in the presence of moral hazard.

We develop a dynamic compartmental model that captures transitions between susceptible individuals and

those with opioid use disorder (OUD), allowing us to evaluate the impact of naloxone accessibility on overdose

mortality and to derive the optimal accessibility policy. We show that full naloxone accessibility is optimal

in the absence of moral hazard or when its effect is small. However, when moral hazard is significant—where

greater access to naloxone encourages riskier opioid use—expanded accessibility can paradoxically increase

overdose deaths.

Extending the model to incorporate peer-driven contagion in opioid misuse, we find that the structure

of the optimal policy remains robust, preserving the bang-bang nature and the reversal induced by moral

hazard. Two additional insights emerge under this interaction-based model. First, in epidemics primarily

driven by prescription-induced opioid use, full accessibility remains optimal. In contrast, when opioid use

spreads socially—especially as the effectiveness of naloxone declines due to potent synthetic opioids like

carfentanil—limited accessibility may become preferable. Second, the relationship between naloxone accessi-

bility and overdose mortality may become non-monotonic, exhibiting an inverted U-shape in which moderate

increases in accessibility can initially worsen outcomes.

A calibrated case study based on U.S. data suggests that under current epidemic conditions, full accessi-

bility remains optimal—a finding that aligns with existing regulatory policies. However, our results highlight

that shifts in epidemic dynamics, such as increased opioid potency or heightened social contagion, may fun-

damentally alter this conclusion. These findings underscore the need for continuous reevaluation of naloxone

distribution policies as the opioid crisis evolves.
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management

1. Introduction

The opioid epidemic is a growing global crisis, with the U.S. experiencing particularly severe

impacts. Opioids – including heroin, tramadol, and fentanyl – are widely prescribed for pain relief

but are highly susceptible to misuse, leading to dependency and addiction. For individuals who
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overdose, the risk of respiratory depression is significant, and without the timely administration of

the opioid antagonist naloxone, the likelihood of suffocation and death rises dramatically.

A 2019 investigation from World Health Organization reported that approximately 600,000 peo-

ple worldwide died from drug-related causes, with nearly 80% of those deaths attributed to opioids.

Moreover, the opioid epidemic in the U.S. worsened during the COVID-19 pandemic, as many

individuals turned to illicit synthetic fentanyl to cope with mental health issues such as anxiety and

depression (Haley and Saitz 2020, Abramson 2021). According to the National Institute on Drug

Abuse, the annual number of deaths related to opioid overdoses in the U.S. was approximately

50,000 between 2017 and 2019, surged to 68,630 in 2020 and further increased to 81,806 in 2022.

The staggering number of deaths caused by opioid abuse poses a grave threat to public health

and well-being, making it imperative for governments to implement policies aimed at reducing

opioid-related mortality. One direct solution is to enhance the accessibility of naloxone, enabling

individuals to promptly administer this life-saving medication in the event of an overdose. Specifi-

cally, classifying naloxone as a non-prescription medicine and allowing individuals with opioid use

disorder (OUD) to take it home has helped increase access to this medication (Hardin et al. 2024).

Several countries have adopted such measures in recent years. In 2023, the U.S. Food and Drug

Administration (FDA) approved Narcan, a nasal spray form of naloxone, for over-the-counter

(OTC) use, allowing individuals to purchase this vital medication without a prescription. Canada

and Australia implemented similar policies in 2016 and 2022, respectively, and Sweden is now

preparing to follow suit to reduce overdose deaths (Euractiv 2024).

While many view these policies as critical, life-saving interventions for individuals struggling

with addiction (Ardeljan et al. 2023, Qayyum et al. 2023), others raise concerns about unintended

consequences. Expanding naloxone access may inadvertently encourage riskier opioid use by giving

individuals an exaggerated sense of protection. For instance, Sally Satel, a psychiatrist and drug

policy scholar, noted, “Patients occasionally tell me that having naloxone on hand has served as

insurance against overdose. So, in some instances, it enhances risk taking” (The Washington Post,

2018).

This ongoing debate underscores the need for analytical tools that can quantify the trade-offs

between increased accessibility and potential behavioral risks. While expanding naloxone acces-

sibility can undoubtedly improve survival rates during overdose events, many experts agree that

it is unlikely to serve as a standalone solution to the opioid crisis. Critics argue that increased

access may inadvertently encourage riskier drug use or fail to address the root causes of addiction.

For example, The Washington Free Beacon published an opinion piece in 2024, saying expanding

naloxone accessibility is unlikely to significantly mitigate the opioid epidemic or serve as a long-

term solution (The Washington Free Beacon 2024). Critics have voiced concerns regarding the

https://www.who.int/news-room/fact-sheets/detail/opioid-overdose
https://nida.nih.gov/research-topics/trends-statistics/overdose-death-rates
https://nida.nih.gov/research-topics/trends-statistics/overdose-death-rates
https://www.euractiv.com/section/health-consumers/news/sweden-makes-Naloxone-spray-an-otc-product-to-prevent-opioid-overdose-deaths/
https://www.washingtonpost.com/opinions/the-moral-hazard-of-naloxone-in-the-opioid-crisis/2018/03/08/c3584f16-2259-11e8-86f6-54bfff693d2b_story.html?utm_source
https://www.washingtonpost.com/opinions/the-moral-hazard-of-naloxone-in-the-opioid-crisis/2018/03/08/c3584f16-2259-11e8-86f6-54bfff693d2b_story.html?utm_source
https://freebeacon.com/biden-administration/how-bidens-new-opioid-initiative-could-create-more-drug-addicts/
https://freebeacon.com/biden-administration/how-bidens-new-opioid-initiative-could-create-more-drug-addicts/
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White House’s endorsement of OTC naloxone. Recently, harm reduction vending machines provid-

ing naloxone were removed in response to public concerns in British Columbia, although naloxone

has been approved as OTC medicine for many years in Canada (The Tyee 2024). Opposition to

expanding naloxone access has also been voiced in policy discussions, with arguments suggesting

it does not address the underlying causes of the opioid crisis (Maine Beacon 2022). Furthermore,

expanding naloxone accessibility may result in unintended consequences, including a potential

increase in overdose risk among individuals with OUD, as naloxone can induce withdrawal effects

(Kline et al. 2020).

The benefits of enhancing accessibility to naloxone are already evident in certain areas. For

instance, in Connecticut, the government’s widespread distribution of naloxone effectively halted

the rise in opioid-related deaths in 2022 and 2023 (CT Insider 2024). Similarly, Massachusetts

and New Jersey have also demonstrated this positive trend (Boston.com 2024, New Jersey Mon-

itor 2024). However, it is important to note that while the number of opioid-related deaths in

Connecticut has decreased, the number of individuals with OUD remains high, or possibly even

higher than before. Furthermore, not all regions have achieved their intended targets of reducing

deaths. According to Cambrian News, deaths involving opioids are becoming more frequent, even

though the number of individuals with OUD carrying naloxone has continuously increased in Wales

(Cambrian News 2024).

Another notable example is Colorado, where The Naloxone Project has aimed to expand access to

this life-saving medication since 2021. Despite these efforts, the state has not seen a corresponding

decline in fatalities (The Colorado Sun 2024). Similarly, a study of opioid overdose deaths in

Hamilton County, Ohio, and neighboring regions found that increased naloxone access did not

consistently translate into reduced mortality (Freiermuth et al. 2023).

Figure 1 further illustrates this pattern by presenting opioid overdose deaths in Canada from

2016 to 2023. Although the Canadian government approved naloxone as an OTC medication

in 2016 (Government of Canada 2024), overdose deaths have continued to rise, suggesting that

expanded access alone may be insufficient to curb the epidemic.

These varying outcomes across regions raise two central questions: (1) How does expanding

naloxone accessibility affect overdose mortality? (2) What level of accessibility minimizes opioid-

related deaths?

To address these questions, we develop and analyze mathematical models that capture the com-

plex dynamics of the opioid epidemic, explicitly incorporating the relationship between naloxone

accessibility, overdose mortality, and the emergence of new individuals with opioid use disorder

(OUD), while accounting for both moral hazard and peer-driven contagion in opioid misuse. Our

framework enables us to evaluate how naloxone accessibility influences overdose outcomes and

https://www1.thetyee.ca/News/2024/09/11/BC-Removes-Harm-Reduction-Vending-Machine-Backlash/
https://mainebeacon.com/in-contrast-to-mills-lepage-continues-to-oppose-broad-distribution-of-narcan/
https://www.ctinsider.com/connecticut/article/ct-overdose-opioid-fentanyl-Naloxone-narcan-deaths-19510376.php
https://www.boston.com/news/local-news/2024/05/16/fatal-overdoses-in-mass-drop-by-over-10-new-cdc-data-shows-opioids/
https://newjerseymonitor.com/2024/07/19/new-jersey-drug-deaths-plummet-in-first-half-of-2024/
https://newjerseymonitor.com/2024/07/19/new-jersey-drug-deaths-plummet-in-first-half-of-2024/
https://www.cambrian-news.co.uk/news/health/the-number-of-drug-deaths-in-wales-unacceptably-high-703836
https://coloradosun.com/2024/05/22/colorado-fentanyl-deaths-dea-approach/
https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-products/announcements/narcan-nasal-spray-frequently-asked-questions.html
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Figure 1 The number of opioid overdose deaths in Canada from 2016 to 2023 (Data source: Government of

Canada).

to derive structured policies that balance life-saving benefits against potential unintended conse-

quences. Despite the urgency and societal relevance of this issue, it remains largely underexplored

in the operations research (OR) and operations management (OM) literature.

1.1. Contributions

The paper makes the following key contributions:

• An operational modeling framework for naloxone accessibility. We introduce a math-

ematical framework to analyze the opioid crisis, combining a Susceptible-Addicted-Susceptible

(SAS) structure with explicit modeling of naloxone accessibility. This framework captures both

the dynamic interplay between opioid use and overdose mortality, and the policy levers available

to public health authorities. To our knowledge, this is the first analytical model to operationalize

naloxone access decisions within an epidemic-inspired structure, enabling transparent evaluation

of trade-offs between overdose prevention and behavioral risks.

• Structured characterization of optimal accessibility under moral hazard.We derive a

sharp policy structure for optimal naloxone accessibility by formulating and solving an optimization

problem that minimizes overdose mortality while explicitly accounting for moral hazard—where

greater accessibility may encourage riskier opioid consumption. The presence of moral hazard yields

non-trivial policy reversals: full accessibility, though intuitively appealing, may cease to be optimal

when the behavioral response to naloxone undermines its benefits.

While policymakers are generally aware of the trade-off between naloxone’s life-saving potential

and its unintended consequences, our model formalizes this tension and provides an explicit thresh-

old that delineates when expanded access is socially optimal. This threshold offers a practical tool:

it connects empirical estimates of behavioral response to policy design, allowing decision-makers

to continuously evaluate whether expanded access remains justified or more restrictive policies are

warranted.

https://health-infobase.canada.ca/substance-related-harms/opioids-stimulants/maps.html
https://health-infobase.canada.ca/substance-related-harms/opioids-stimulants/maps.html
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• Robustness of optimal policy under social contagion dynamics.Our results reveal that

the structure of the optimal policy remains robust even when incorporating peer-driven contagion in

opioid misuse. In particular, the switching behavior induced by moral hazard persists under social

contagion dynamics, but new complexities emerge. Specifically, while full naloxone accessibility

is optimal when prescription misuse dominates, limited accessibility may become preferable in

socially driven epidemics—especially as more potent synthetic opioids, such as carfentanil, reduce

naloxone’s effectiveness.

A calibrated case study based on U.S. data demonstrates the framework’s practical relevance.

It suggests that, under current epidemic conditions, full accessibility remains optimal—a finding

that aligns with existing regulatory policies. However, this outcome is contingent on present-day

dynamics. Our model shows that future shifts, such as increased opioid potency may fundamentally

alter optimal policies.

Additionally, we identify a non-monotonic relationship between accessibility and overdose mor-

tality: while greater access can reduce mortality in some settings, it may initially worsen outcomes

in others, following an inverted U-shaped pattern. Together, these insights highlight the impor-

tance of continuous, evidence-based reevaluation of naloxone policies as the opioid crisis evolves,

ensuring that interventions remain both effective and responsive to changing conditions.

1.2. Organization

The remainder of the paper is structured as follows. Section 2 reviews the related literature. From

Section 3 to Section 6, we sequentially develop four models to characterize the progression of

the opioid epidemic and conduct corresponding analyses. We begin with a basic SAS model with

opioid prescription-induced addiction in Section 3, and then progressively incorporate two key

elements in the subsequent sections: (1) the potential moral hazard arising from naloxone and

(2) the transmission dynamics of opioid addiction driven by the social interactions between the

susceptible and OUD populations. See Table 1 for an overview of the structure and focus of these

four sections. Next, to illustrate and validate our modeling framework, Section 7 provides a case

Table 1 Paper organization: Sections 3 to 6.

No moral hazard Moral hazard present

Prescription-induced SAS (Section 3) SAS-M (Section 4)

Social + Prescription-induced D-SAS (Section 5) D-SAS-M (Section 6)

study based on data from the U.S. Finally, Section 8 concludes the paper and outlines directions

for future research. All technical proofs are provided in the electronic companion.
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2. Literature review

The widespread impact and equity concerns of the opioid crisis in the U.S. significantly fueled

research across various disciplines. We began by reviewing the related OR/OM literature, followed

by a brief overview of relevant fields, including public health, economics, and medicine.

Zaric et al. (2000) were among the first to address opioid addiction management in OR/OM. They

analyzed the U.S. drug crisis, highlighting the cost-effectiveness of expanding methadone use to

treat heroin addiction and reduce HIV transmission. Using a dynamic compartmental model, they

found that increased access to methadone maintenance improved the quality of life for individuals

with OUD. Although research on the opioid crisis waned in subsequent years, it recently regained

significant attention.

Since an opioid overdose can cause suffocation within a short golden window, the use of drones

to rapidly deliver life-saving medication became crucial for those overdosing without naloxone on

hand. Research by Gao et al. (2024) and Lejeune and Ma (2025) focused on naloxone distribution

using drones. Both studies established optimization models to reduce response time and decrease

mortality rates. Ansari et al. (2024) combined a dynamic compartmental model with a Markov

decision process to generate optimal budget allocations for better-formulated intervention policies

aimed at combating the opioid epidemic. Similarly, Luo and Stellato (2024) integrated a dynamic

model with a mixed-integer programming problem to address opioid treatment facility locations and

treatment budget allocations. Their method effectively increased treatment opportunities for indi-

viduals with OUD. Recently, Baucum et al. (2025) developed a predict-then-optimize framework

to reallocate substance use treatment centers across U.S. counties, balancing overdose mortality

reduction with equity and equality in access. In the context of the opioid epidemic, Gökçınar et al.

(2022) developed a pain management framework for prescription opioids to balance pain relief and

opioid addiction. Recently, Gan et al. (2025) proposed a constrained partially observable MDP to

model the health states as well as transitions of patients with OUD, aiming to optimize personalized

treatment strategies delivered through wearable devices.

In addition to these studies, several papers employed empirical approaches to investigate the

opioid crisis. Studies by Yang and Mishra (2025), Liu and Bharadwaj (2020), Bobroske et al.

(2022), KC et al. (2022), and Attari et al. (2024) aimed to reveal relationships between the opioid

epidemic and factors such as the internet, drug supply chain, and race, offering insights for effective

management and response strategies.

Beyond the opioid epidemic, several studies used epidemiological models to examine operational

questions related to the COVID-19 pandemic.

Li et al. (2023) developed an effective epidemiological tool to predict COVID-19 cases, deaths,

and the effects of government interventions. The model informed the selection of vaccine trial sites



7

by forecasting COVID-19 incidence under different intervention scenarios. A data-driven approach

to optimize COVID-19 vaccine distribution was later proposed by Bertsimas et al. (2022), integrat-

ing the epidemiological model with a prescriptive optimization model for vaccination site locations

and allocation. The method demonstrated the potential to increase vaccination effectiveness while

ensuring fairness across states and robustness to uncertainties.

Chen and Kong (2023) presented an epidemiological model that integrated the effects of limited

medical resources to assess their influence on COVID-19 transmission and mortality. The study

examined three hospital admission policies, comparing their effects on infection, mortality, and bed

occupancy, particularly under constrained medical capacity. The findings emphasized the impor-

tance of timely interventions and indicated that a one-time lockdown policy could be as effective

as a bed-triggered policy if implemented at the appropriate stage of the outbreak.

Although several OR/OM studies addressed opioid prevalence and mitigation, systematic

research on the link between naloxone accessibility and the opioid epidemic remained limited.

To address this gap, this paper developed and analyzed stylized mathematical models to provide

insights into the managerial and policy implications of naloxone accessibility, tackling a critical

issue of public health and societal importance.

We concluded this section with a brief review of relevant studies in economics, public health, and

medicine. In these fields, naloxone accessibility remained a topic of significant debate. A substantial

body of research in public health and medicine supported expanding naloxone accessibility. For

example, Rao et al. (2021) employed a dynamic compartmental model to project that overdose-

related deaths could reach 1,220,000 by 2029 in the U.S. Their analysis indicated that a 30%

increase in naloxone accessibility could avert 25% of these deaths. Jawa et al. (2022) strongly

advocated for increased naloxone access and OTC availability, suggesting that insurance companies

should reimburse individuals with OUD for naloxone. Similar recommendations are provided in

Burris et al. (2009), Houser (2023), Messinger et al. (2023), Saberi et al. (2024).

In contrast, several economic studies raise concerns about behavioral side effects of naloxone

accessibility, often framed as moral hazard (e.g., Doleac and Mukherjee 2022, Packham 2022).

Our study also examines this mechanism, which reflects individuals’ tendency to engage in riskier

behavior when protected from the full consequences. The concept of moral hazard originated in

traffic safety research, where safer vehicles were shown to encourage reckless driving, offsetting

some safety gains through higher pedestrian fatalities and non-fatal accidents (Peltzman 1975).

Similar unintended consequences have been documented in finance and insurance. For example,

government guarantees can lead banks to anticipate future bailouts, prompting banks to adopt

riskier investment strategies and resulting in moral hazard (Pernell and Jung 2024).
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In the context of the opioid crisis, Doleac and Mukherjee (2022) and Packham (2022) argued

that expanding naloxone access may have mixed effects, as it could unintentionally encourage

riskier drug use. Similarly, Spencer (2023) and Liu et al. (2025) showed that decriminalization

policies, which increased drug accessibility, were followed by unexpected rises in overdose deaths.

Our findings also relate to Cawley and Dragone (2024), who examined how introducing less harmful

substitutes – such as methadone for opioid use – can improve health outcomes, but under certain

conditions may also lead to unintended consequences.

Building on this literature, our analysis provides a structured, operational model that explicitly

captures how naloxone accessibility, moral hazard, and evolving epidemic dynamics jointly influence

overdose mortality. We formally characterize the conditions under which increased accessibility can

either save lives or unintentionally worsen public health outcomes.

3. The Basic SAS Model

Our basic SAS model, which is illustrated in Figure 2, comprises two groups: S(t), representing

the number of susceptible individuals at time t, and A(t), denoting the number of individuals with

OUD at time t.

Figure 2 The illustration of the basic SAS model.

We denote by Λ> 0 the inflow rate into the susceptible group, capturing births and potential

immigration, and by α > 0 the outflow rate from both groups, representing natural deaths and

possible emigration. Similar to Luo and Stellato (2024), in our basic model, we assume that new

individuals with OUD are generated at a transition rate η > 0 from the susceptible group. This

transition pattern can be interpreted as patients spontaneously developing OUD as a result of

opioid prescription induction.

In the case of an overdose, δl ∈ (0,1) and δh ∈ (0,1) denote the mortality rates at the individual

level, with δl being lower when timely treatment with naloxone is provided, and δh being higher

when such treatment is unavailable. That is, δh > δl. The rate at which overdose events occur
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among individuals with OUD is denoted as χ > 0. The decision variable is θ ∈ [0,1], representing

the accessibility of naloxone within the OUD group (i.e., the proportion of individuals with OUD

who possess naloxone). Note that θ = 1 indicates that all individuals with OUD have access to

naloxone during an overdose emergency, while θ= 0 indicates that no individuals with OUD have

access to naloxone during an overdose emergency. It is important to emphasize that in our model,

θ reflects naloxone accessibility through public channels. Zero accessibility does not imply that

naloxone is entirely unavailable; rather, it indicates that public distribution would not be optimal

under certain conditions. Naloxone may still be strictly prescribed or administered in special clinical

settings by healthcare professionals as medically appropriate. Similar regulatory structures exist in

practice; for example, in the U.S., methamphetamine (commonly referred to as Ice) is classified as

a Schedule II controlled substance (Drug Enforcement Administration 2024). While its general use

is strictly prohibited, limited medical administration remains permitted under strict supervision

in exceptional clinical situations.

While our model primarily focuses on naloxone accessibility for individuals with OUD, we

acknowledge that expanding naloxone access extends beyond this group to the general public.

By increasing community-wide availability, policymakers aim to ensure that bystanders can inter-

vene during an overdose, reinforcing the broader public health objective of reducing opioid-related

mortality across society.

Lastly, we denote by γ > 0 the rate at which individuals with OUD successfully overcome their

active use through medication-assisted treatment or other therapeutic methods. Recognizing the

potential for relapse, we also account for individuals who, after successful detoxification, may revert

to active use.

In the basic model, we assume that opioid overdose rates are uniform across the OUD population,

regardless of naloxone possession. In other words, possessing naloxone does not lead to increased

opioid consumption or overdose. This assumption aligns with a widely accepted perspective within

parts of the public health community (New York Times 2024, Tse et al. 2022). In Section 4, we

incorporate a moral hazard, which suggests an increased risk of opioid overdose among individuals

with OUD who possess naloxone, as argued by some economic studies (Doleac and Mukherjee 2022,

Packham 2022).

Furthermore, in Section 5 and Section 6, we introduce two model extensions in which the gen-

eration of new individuals with OUD could be influenced by interactions between the susceptible

and OUD groups – an approach aligns with the framework of infectious model prevalent in epi-

demiology, which has been proposed in several studies as a suitable representation of the opioid

overuse crisis (Ansari et al. 2024, Cole et al. 2024).

https://www.deadiversion.usdoj.gov/schedules/orangebook/c_cs_alpha.pdf
https://www.nytimes.com/2024/03/01/opinion/moral-hazard-drug-addiction.html
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The dynamics of the basic SAS model are described by the following system of differential

equations: 
Ṡ(t) = Λ− (α+ η)S(t)+ γA(t),

Ȧ(t) = ηS(t)− (α+ γ+χθδl +χ(1− θ)δh)A(t),

S(t),A(t)≥ 0.

(1)

Note that the overall mortality rate regarding overdose in model (1) is (χθδl +χ(1− θ)δh).

3.1. Optimization and Analysis

We begin by deriving the equilibrium point, (S∗,A∗), for the basic model described in (1):

(S∗,A∗) =


Λ(χ(θδl +(1− θ)δh)+α+ γ)

α(α+ γ+ η)+χ(α+ η)(θδl +(1− θ)δh)
,

ηΛ

α(α+ γ+ η)+χ(α+ η)(θδl +(1− θ)δh)

 .

Recognizing that fatal outcomes from opioid abuse represent the primary concern for both poli-

cymakers and society (CNN 2017, Reider 2019), our objective is to minimize the long-run average

opioid overdose mortality. Specifically, we seek to solve:

min
θ∈[0,1]

D(θ) := lim
T→∞

1

T

∫ T

0

χ(θδl +(1− θ)δh)A(t)dt

=χ(θδl +(1− θ)δh)A
∗

=
ηΛχ(θδl +(1− θ)δh)

α(α+ γ+ η)+χ(α+ η)(θδl +(1− θ)δh)
.

(2)

Proposition 1 (Optimal accessibility for the SAS model). For problem (2), full nalox-

one accessibility is optimal.

Proposition 1 establishes that full naloxone accessibility minimizes opioid overdose mortality.

Intuitively, broader naloxone availability increases the likelihood of survival during overdose events

among individuals with OUD. This result aligns with widely held views that advocate for universal

access to naloxone (e.g., The Washington Post, 2023). Furthermore, it is consistent with current

FDA regulations, which support its approval as an OTC medication and emphasize the importance

of maximizing its accessibility.

4. Accounting for Moral Hazard in SAS-M Model

The moral hazard phenomenon, also known as the Peltzman effect (Peltzman 1975), has been

widely discussed in relation to the opioid crisis. Moral hazard is an economic concept describing the

tendency of individuals to take riskier actions when they can mitigate or avoid the consequences

of those risks. A classic and illustrative example of moral hazard pertains to traffic safety: for

instance, Sagberg et al. (1997) observed that taxi drivers operating vehicles equipped with Anti-

lock Braking Systems (ABS) tend to wear seatbelts less frequently compared to those driving taxis

without ABS.

https://edition.cnn.com/2017/08/10/health/trump-opioid-emergency-declaration-bn
https://www.washingtonpost.com/opinions/2023/03/29/narcan-over-the-counter-fda-approval/
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In the context of the opioid crisis, there is growing concern that easier access to naloxone may

encourage riskier opioid consumption behavior among individuals with OUD, leading to higher

misuse rates. Specifically, individuals may consume opioids in a compensatory manner, assuming

naloxone will mitigate the risk of fatal overdose. Some economic studies have used econometric

methods to provide evidence of moral hazard in this context (Doleac and Mukherjee 2022, Packham

2022). Furthermore, individuals who overdose and are revived with naloxone often experience severe

withdrawal symptoms, which can increase the likelihood of immediate opioid reuse (Greene 2018).

However, some public health experts challenge these findings, arguing that moral hazard is

either negligible or irrelevant in the context of the opioid crisis (New York Times 2024, Tse et al.

2022). They emphasize that the life-saving benefits of naloxone far outweigh the speculative risks

of increased opioid misuse.

Although the existence and extent of moral hazard remain a subject of debate, we believe it

is crucial to consider its potential impact on the opioid crisis and the optimal design of naloxone

accessibility policies. Ignoring moral hazard risks may result in incomplete or suboptimal strategies

for addressing opioid misuse and overdose fatalities. To this end, we introduce ∆> 0 to represent

the degree of moral hazard among individuals with OUD who have access to naloxone, reflecting

the increase in overdose risk due to behavioral changes stemming from naloxone availability. A

larger ∆ reflects a greater likelihood of opioid overuse within this group.

The SAS-M model incorporating moral hazard is in the following system of differential equations:
Ṡ(t) = Λ− (α+ η)S(t)+ γA(t),

Ȧ(t) = ηS(t)− (α+ γ+(χ+∆)δlθ+χδh(1− θ))A(t),

S(t),A(t)≥ 0,

where (χ+∆)δlθ+χδh(1−θ) is the overall mortality rate regarding opioid overdose and (χ+∆)δlθ

represents the mortality rate of the OUD group possessing naloxone at a moral hazard level ∆.

Clearly, there are additional ∆δlθA(t) deaths involving opioids at time t.

4.1. Optimization and Analysis

We begin by deriving the equilibrium point (S∗
M ,A∗

M) for the SAS-M model:

(S∗
M ,A∗

M) =


Λ(α+ γ+χ(θδl +(1− θ)δh)+∆δlθ)

α(α+ γ+ η)+ (α+ η)(χ(θδl +(1− θ)δh)+∆δlθ)
,

ηΛ

α(α+ γ+ η)+ (α+ η)(χ(θδl +(1− θ)δh)+∆δlθ)

 .

The corresponding optimization objective for the SAS-M model is given by

min
θ∈[0,1]

DM(θ) := lim
T→∞

1

T

∫ T

0

(χ(θδl +(1− θ)δh)+∆δlθ)A(t)dt

=(χ(θδl +(1− θ)δh)+∆δlθ)A
∗
M

=
ηΛ(χ(θδl +(1− θ)δh)+∆δlθ)

α(α+ γ+ η)+ (α+ η)(χ(θδl +(1− θ)δh)+∆δlθ)
.

(3)

https://www.nytimes.com/2024/03/01/opinion/moral-hazard-drug-addiction.html
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As evident from (3), both the direct life-saving benefits of naloxone and the adverse effects

of moral hazard contribute to overdose mortality through the term χ((1− θ)δh + θδl) +∆δlθ. In

particular, for any fixed level of accessibility θ, we have ∂DM/∂∆> 0, indicating that an increase

in moral hazard directly increases overdose mortality and may, therefore, contradict the public

health objective of reducing overdose deaths.

To formally capture the tension between opposing forces from moral hazard and naloxone acces-

sibility, we next define the neutral effect threshold associated with moral hazard:

∆̄ :=
χ(δh − δl)

δl
> 0.

In other words, ∆̄ represents the critical threshold at which naloxone accessibility yields a neutral

effect on overdose mortality. Specifically, when ∆ = ∆̄, the total overdose mortality rate, (χ +

∆̄)δlθ+χδh(1− θ), simplifies to χδh, which is independent of the accessibility level θ.

Theorem 1 characterizes the optimal naloxone accessibility policy in the presence of moral hazard.

Theorem 1 (Optimal accessibility for the SAS-M model). For problem (3), full accessi-

bility is optimal if ∆< ∆̄, and no accessibility is optimal otherwise.

For clarity and consistency throughout the paper, the boundary case ∆= ∆̄ is combined with the

case where no accessibility is optimal. We note, however, that at this threshold, any accessibility

yields identical overdose mortality levels and is therefore optimal. More generally, we classify any

non-unique optimal policy that includes zero accessibility as a zero-accessibility policy by default

throughout the paper.

According to Theorem 1, when moral hazard is relatively mild, the life-saving benefits of naloxone

outweigh its adverse behavioral effects, making full accessibility optimal. Conversely, when moral

hazard becomes sufficiently large, the negative consequences dominate, and restricting accessibility

becomes preferable. Limiting access in this case helps mitigate overdose risk and prevents further

loss of life. This bang-bang structure, in which the optimal policy lies at one of the extremes, is

common in healthcare management models (Mehrez and Gafni 1987, Chehrazi et al. 2019).

Figure 3 illustrates the effect of naloxone accessibility on overdose mortality across varying lev-

els of moral hazard. When moral hazard is relatively low (∆ < ∆̄ = 0.06), increasing naloxone

accessibility leads to a decline in overdose mortality, highlighting the life-saving benefits of broader

naloxone availability in settings with limited risk compensation behavior. In contrast, when moral

hazard is high (∆> ∆̄), greater naloxone accessibility results in higher overdose mortality, suggest-

ing that excessive reliance on naloxone may encourage riskier opioid use behaviors that outweigh

its protective effect. At the threshold level (∆= ∆̄), overdose mortality is independent of naloxone

accessibility, indicating a tipping point at which the positive and negative effects of accessibility are
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balanced. Furthermore, holding naloxone accessibility θ constant, an increase in moral hazard con-

sistently leads to higher overdose mortality, reinforcing the detrimental role of risk compensation

in undermining public health interventions.
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Figure 3 Naloxone accessibility effect on overdose mortality DM . The parameters are: Λ = 2× 105, α = 0.01,

η= 0.09, χ= 0.012, δh = 0.75, δl = 0.125, γ = 0.1, ∆̄ = 0.06.

5. The D-SAS Model Incorporating Social Interaction

In this section, we extend our analysis by developing a more comprehensive model inspired by

epidemiological frameworks commonly used to study the opioid crisis (e.g., Battista et al. 2019,

Cole and Wirkus 2022, Cole et al. 2024). These studies demonstrate that opioid misuse can be

effectively represented using epidemiological approaches, as its spread often follows patterns similar

to infectious disease transmission, driven by social interactions and peer influence. The emergence

of new cases of OUD depends on contacts between individuals at risk and those already affected,

leading to nonlinear growth dynamics analogous to disease outbreaks.

Similar to infectious diseases, where contact between infected and susceptible individuals accel-

erates transmission, opioid use frequently expands through social networks and environmental

exposure. Individuals with OUD may influence others directly or indirectly, contributing to the

initiation of opioid use through interpersonal relationships and community-level factors. Empirical

evidence supports this dynamic, showing that opioid misuse often emerges from peer networks,

community settings, or family environments (Luthar et al. 1992, Worsham and Barnett 2020,

Rockett et al. 2024, Adamopoulou et al. 2024).

We introduce the D-SAS model, which incorporates two pathways for the initiation of OUD: a

constant-rate term, as in the original SAS model, and an interaction term that accounts for new
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cases arising from interactions between susceptible individuals and those already diagnosed with

OUD. In Section 6, we further extend the model to include the effects of moral hazard. A similar

combined framework was previously applied by Ansari et al. (2024) in the context of the opioid

crisis.

We adopt the standard incidence form, β S(t)A(t)

N(t)
, to model the interaction between suscepti-

ble individuals and individuals with OUD, where β denotes the transmission rate, and N(t) =

S(t) +A(t) represents the total population at time t. This formulation is commonly used in epi-

demiological models of the opioid crisis (e.g., Cole and Wirkus (2022), Cole et al. (2024)). The

underlying assumption is that opioid transmission primarily occurs within localized and bounded

social networks, where individuals tend to interact repeatedly within specific peer groups and com-

munities (Mars et al. 2014). As a result, the likelihood of interaction depends on the proportion of

individuals in each group rather than their absolute numbers (Martcheva 2015).

The D-SAS model is governed by the following system of differential equations:
Ṡ(t) = Λ− (α+ η)S(t)−β

S(t)A(t)

N(t)
+ γA(t),

Ȧ(t) = ηS(t)+β
S(t)A(t)

N(t)
− (α+ γ+χθδl +χ(1− θ)δh)A(t),

S(t),A(t)≥ 0.

(4)

Remark 1. To ensure the robustness of our results, we also analyze an alternative formulation

based on the mass action incidence form, βS(t)A(t), which has been used in previous studies of

opioid use dynamics (e.g., Djilali et al. 2017, Huang and Liu 2013). The optimal accessibility policy

for the D-SAS model under mass action incidence is provided in Appendix EC.1. While the solution

formulations are slightly different, the overall structure of the solution and the key insights remain

consistent, demonstrating the robustness of the results.

5.1. Optimization and Analysis

We denote the equilibrium of the D-SAS model by (S∗
D,A

∗
D), where closed-form expressions are

provided in Appendix EC.2. The corresponding optimization problem aims to minimize the long-

run average overdose mortality, given by:

min
θ∈[0,1]

DD(θ) := lim
T→∞

1

T

∫ T

0

(χθδl +χ(1− θ)δh)A(t)dt

=χ(θδl +(1− θ)δh)A
∗
D.

(5)

Before characterizing the optimal naloxone accessibility policy for the D-SAS model in Theo-

rem 2, we introduce the following auxiliary terms:

ωl := (α−β+ γ+ η)2 +4βη+2χδl(α−β+ γ+ η),

ωh := (α−β+ γ+ η)2 +4βη+2χδh(α−β+ γ+ η).

Note that when β >α+ γ+ η, it holds that ωl >ωh.
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Theorem 2 (Optimal accessibility for the D-SAS model). For problem (5), the optimal

naloxone accessibility policy is as follows:

1. Full accessibility is optimal if any of the following conditions holds:

a. β ≤ α+ η+ γ;

b. β >α+ η+ γ and ωh ≥ 0;

c. β >α+ η+ γ, ωh < 0, ωl > 0, and DD(θ= 1)<DD(θ= 0).

2. No accessibility is optimal if any of the following conditions holds:

a. β >α+ η+ γ and ωl ≤ 0;

b. β >α+ η+ γ, ωh < 0, ωl > 0, and DD(θ= 0)≤DD(θ= 1).

According to Theorem 2, the optimal accessibility level in the D-SAS model remains either full

or zero. Full accessibility is optimal when the primary driver of the opioid crisis is the spontaneous

onset of opioid use following medical prescriptions (Case 1a, i.e., when η is relatively large). This

result is consistent with the findings from the basic SAS model (Proposition 1).

However, when opioid use is primarily driven by peer influence and social transmission (i.e.,

for large enough values of β such that β > α+ η+ γ), full accessibility may no longer be optimal

(Cases 2a and 2b).

At least for now, naloxone is still highly effective in reversing opioid overdoses, with a success

rate ranging from 75% to 100% (Rzasa and Galinkin 2018), implying that δl is typically small and

thus ωl ≤ 0 is less likely. Nevertheless, the growing prevalence of carfentanil – an opioid estimated to

be 100 times more potent than fentanyl – raises concerns (New York Post 2024). Naloxone may be

less effective in reversing overdoses caused by such high-potency substances, which would increase

δl and make Cases 2a and 2b more relevant. This concern is further supported by recent evidence

suggesting that high-dose naloxone is not necessarily more effective in such scenarios (STAT 2024).

As a result, if carfentanil or similar ultra-potent opioids become more widespread in the future,

the assumptions underlying the current optimal policy may no longer hold, and policies regarding

naloxone distribution and usage would need to be carefully reexamined.

In addition, according to Theorem 2, we observe a counterintuitive outcome: when the overdose

rate χ becomes sufficiently high, restricting naloxone accessibility may be socially optimal. Under

the condition of β > η + α+ γ, both thresholds ωh and ωl decline with increasing overdose rate

χ, maybe causing the system to transition from Cases 1b to Cases 2a in the parameter space.

Intuitively, this reflects a scenario where expanding naloxone access reduces overdose mortality in

the short term but reinforces social dynamics that fuel OUD prevalence. When baseline overdose

rates are already high, this unintended consequence can offset the benefits of naloxone, ultimately

leading to more deaths. This analysis provides policymakers with a quantitative framework to

https://nypost.com/2024/12/10/us-news/cdc-warns-rise-in-opioid-thats-100-times-more-potent-than-fentanyl/
https://www.statnews.com/2024/02/08/narcan-high-dose-naloxone-overdose/
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identify such tipping points, highlighting when increased accessibility could backfire under specific

epidemic conditions.

Next, Figure 4 illustrates the optimal naloxone accessibility policy θ∗ under the D-SAS model

across a range of OUD onset rates η and transmission rates β. The figure partitions the (η,β)

space into five distinct regions, each corresponding to a different case in Theorem 2. The region

enclosed by the solid black line comprises two areas (Cases 2a and 2b), where zero accessibility is

optimal. In contrast, the area outside the black line includes three regions (Cases 1a, 1b, and 1c),

where full accessibility is optimal. In other words, holding other parameters fixed, full accessibility
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Figure 4 The optimal policy structure for the D-SAS model regarding β and η on the basis of D-SAS model.

The parameters are Λ= 2× 105, γ = 0.002, α= 0.006, δh = 0.75, δl = 0.35, χ= 0.002.

is optimal when either β is relatively small or large, or when η is relatively large. When β is small,

peer influence plays a limited role in opioid initiation, so increasing naloxone accessibility reduces

mortality without triggering broader behavioral responses. When β is large, social transmission

may nonlinearly pull more susceptibles into the OUD group, enlarging the population exposed to

overdose risk; hence, broadening naloxone accessibility is crucial to offset the corresponding rise in

preventable deaths.

As for η, a high spontaneous initiation rate means that many individuals begin opioid use inde-

pendently of social exposure. In such scenarios, the societal benefits of wide naloxone availability

outweigh the risks, justifying full accessibility. Conversely, when β is moderate and η is low, opi-

oid use remains relatively contained. In these cases, increasing accessibility has limited impact on

reducing deaths, making zero accessibility the optimal policy.
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Lastly, note that while overdose mortality under Cases 1a, 1b, and 2a exhibits a monotonic

relationship with accessibility – either consistently decreasing or increasing – this is not the case in

Cases 1c and 2b. This is because, in these two cases, mortality follows an inverted U-shaped pat-

tern, where modest increases in accessibility may initially raise mortality before eventually reducing

it at higher levels. This non-monotonic behavior, illustrated in Figure 5, highlights that marginal

increases in naloxone accessibility can, in fact, be detrimental. Accordingly, in such cases, identi-

fying the optimal level of accessibility requires comparing the outcomes at the two extreme values,

θ = 0 and θ = 1. This non-monotonicity has important policy implications. Empirical findings by
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Figure 5 The impact of naloxone accessibility θ on overdose mortality. The specific parameter values used for

each plot are provided in Table EC.2 in Appendix EC.5.

Packham (2022) show that modest expansions in syringe service programs promoting naloxone

access may increase opioid-related deaths, although this trend is not observed for more substantial

expansions (Lambdin et al. 2023). While this result – often referred to as a measurement problem

– has faced criticism in public health circles (New York Times 2024), our model suggests that such

a counter-intuitive phenomenon is theoretically plausible. Modest increases in naloxone accessibil-

ity may fail to offset the increase in opioid misuse they trigger due to wider social interactions,

potentially resulting in higher overdose mortality.

https://www.nytimes.com/2024/03/01/opinion/moral-hazard-drug-addiction.html
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6. Accounting for Moral Hazard in D-SAS-M Model

We now incorporate moral hazard into the D-SAS model, resulting in the D-SAS-M model, whose

dynamics are governed by the following system of differential equations:
Ṡ(t) = Λ− (α+ η)S(t)−β

S(t)A(t)

N(t)
+ γA(t),

Ȧ(t) = ηS(t)+β
S(t)A(t)

N(t)
− (α+ γ+(χ+∆)θδl +χ(1− θ)δh)A(t),

S(t),A(t)≥ 0,

where N(t) = S(t)+A(t).

6.1. Optimization and Analysis

We denote the equilibrium of the D-SAS-M model by (S∗
D,M ,A∗

D,M). Due to the complexity of the

expressions, their closed-form representations are provided in Appendix EC.2.

The corresponding optimization problem that minimizes the long-run average overdose mortality

is given by:

min
θ∈[0,1]

DD,M(θ) := lim
T→∞

1

T

∫ T

0

((χ+∆)θδl +χ(1− θ)δh)A(t)dt

=((χ+∆)θδl +χ(1− θ)δh)A
∗
D,M .

(6)

For brevity, before stating Theorem 3, we define the auxiliary term:

ωl,M := (α−β+ γ+ η)2 +4βη+2(χ+∆)δl(α−β+ γ+ η).

When β > α+ γ + η, we have ωl > ωl,M . In this case, ωl,M > ωh if and only if ∆< ∆̄; otherwise,

ωl,M <ωh.

Theorem 3 (Optimal accessibility for the D-SAS-M model). For problem (6), the opti-

mal naloxone accessibility policy is as follows:

1. Full accessibility is optimal if any of the conditions in Table 2 holds.

Table 2 Conditions under which full accessibility (θ= 1) is optimal

Case ∆ vs. ∆̄ β vs. α+ η+ γ ωh, ωl,M Additional Condition

a. ∆< ∆̄ β ≤ α+ η+ γ – –

b. ∆< ∆̄ β >α+ η+ γ ωh ≥ 0 –

c. ∆> ∆̄ β >α+ η+ γ ωh ≤ 0 –

d. ∆< ∆̄ β >α+ η+ γ ωh < 0, ωl,M > 0 DD,M(θ= 1)<DD,M(θ= 0)

e. ∆> ∆̄ β >α+ η+ γ ωh > 0, ωl,M < 0 DD,M(θ= 1)<DD,M(θ= 0)

2. No accessibility is optimal if any of the conditions in Table 3 holds.
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Table 3 Conditions under which zero accessibility (θ= 0) is optimal

Case ∆ vs. ∆̄ β vs. α+ η+ γ ωh, ωl,M Additional Condition

a. ∆≥ ∆̄ β ≤ α+ η+ γ – –

b. ∆≤ ∆̄ β >α+ η+ γ ωl,M ≤ 0 –

c. ∆≥ ∆̄ β >α+ η+ γ ωl,M ≥ 0 –

d. ∆≤ ∆̄ β >α+ η+ γ ωh < 0, ωl,M > 0 DD,M(θ= 0)≤DD,M(θ= 1)

e. ∆≥ ∆̄ β >α+ η+ γ ωh > 0, ωl,M < 0 DD,M(θ= 0)≤DD,M(θ= 1)

6.2. Numerical Examples and A Comparison to the SAS-M Model

According to Theorem 3, Figure 6 illustrates how the optimal naloxone accessibility policy depends

on the overdose mortality rates δl and δh, representing mortality with and without naloxone,

respectively. The blank area in the figure reflects an infeasible region where the condition δl < δh

does not hold.
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Figure 6 The impact of mortality rate δl and δh on the optimal accessibility θ∗ on the basis of D-SAS-M model.

∆=0.005 and χ= 0.0125 for both plots. Other specific parameter values used for each plot are provided

in Table EC.3 in Appendix EC.5.

The effectiveness of naloxone increases as the difference (δh− δl) grows, with smaller values of δl

indicating greater life-saving potential. Consequently, when the parameter combination (δh, δl) lies

sufficiently far from the blank region, particularly when δl is small, full accessibility is more likely

to be optimal in both panels of Figure 6.

The black upward-sloping straight lines in both plots of Figure 6 represent the set of (δh, δl)

pairs for which the neutral effect threshold ∆̄ equals the degree of moral hazard ∆. Parameter
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combinations below each line correspond to settings where ∆̄>∆, meaning the life-saving benefits

of naloxone outweigh its unintended impact on opioid misuse. Conversely, combinations above the

curve reflect cases where ∆̄<∆, implying that moral hazard dominates the benefits of naloxone.

We begin by examining the left panel of Figure 6, which represents opioid crises primarily driven

by prescription opioid addiction (i.e., the SAS-M model or the D-SAS-M model with β ≤ η+α+γ).

In this case, the black curve partitions the parameter space into two distinct regions, corresponding

to Cases 1a and 2a from Theorem 3. Below the curve, full accessibility is optimal, whereas above

the curve, zero accessibility is optimal. Thus, in this case, the optimal naloxone policy depends

solely on the comparison between ∆̄ and ∆.

In contrast, the right panel of Figure 6 represents the D-SAS-M model with β > η+α+γ, where

social transmission drives the crisis. Here, the optimal policy structure becomes more complex and

may reverse above the black curve compared to the left panel. Thus, the black upward-sloping

straight line no longer solely determines the policy outcome.

Specifically, Cases 1c and 1e demonstrate that full accessibility may be optimal even when the

moral hazard exceeds the neutral threshold (∆ > ∆̄). As δl and δh increase, the likelihood that

ωh and ωl,M become negative also rises, making these cases more prevalent. In other words, when

opioid misuse becomes more lethal, strong social diffusion and high moral hazard may still justify

expanding naloxone accessibility to reduce overall overdose deaths—despite limited individual-

level effectiveness. Note that in these cases, full accessibility leads to a higher overall mortality

rate in the D-SAS-M model: (χ+∆)δl > χδh. This implies that increasing naloxone accessibility

may accelerate the rate at which individuals with OUD exit the population, thereby reducing

the exposure of susceptible individuals to those with OUD. Over the long term, this dynamic

can mitigate the adverse effects of social contagion and ultimately reduce overdose events. This

observation is reminiscent of the classical virulence–transmissibility trade-off (Kun et al. 2023),

which posits that highly lethal viruses are less likely to spread widely. We interpret this result

with caution: at the macro level, moral hazard may be less detrimental than traditionally assumed.

However, we emphasize that from an individual-level perspective, moral hazard remains a serious

concern. While our case study finding in Section 7 suggests that Cases 1c and 1e are less likely to

characterize current real-world conditions, the emergence of increasingly potent opioid substances

could make these scenarios more relevant in the future. We therefore recommend that policymakers

exercise greater caution and prepare proactively for such potential developments.

Conversely, Cases 2b and 2d illustrate that zero accessibility may be optimal despite the immedi-

ate life-saving benefits of naloxone. In these cases, the relative advantage of naloxone’s effectiveness

(δl) over the mortality rate without it (δh) is marginal. Given the high moral hazard risks associated

with these scenarios, the optimal policy may be to restrict accessibility entirely.



21

Figure 7 illustrates the optimal naloxone policy under the D-SAS-M model as a function of the

transmission rate β and the onset rate η. The left plot reflects cases where moral hazard ∆ does

not exceed the neutral threshold ∆̄, while the right plot shows the opposite. Each plot includes

five distinct policy regions. When moral hazard is small (left panel), the optimal policy resembles
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Figure 7 The optimal policy structure regarding β and η on the basis of D-SAS-M model. The parameters for

both plots are Λ= 2× 105, γ = 0.002, α= 0.006, δh = 0.75, δl = 0.35, χ= 0.002, ∆̄ = 0.0023.

the structure of the D-SAS model in Figure 4. However, when moral hazard is substantial (right

panel), the policy structure reverses: optimal accessibility is 1 inside the region enclosed by the

solid black curve and 0 outside.

As shown in the right plot, when both β and η are high, optimal accessibility drops to zero. In

this case, elevated social transmission or onset rates increase overdose risk, and expanding naloxone

access amplifies moral hazard, worsening the crisis. Full accessibility remains optimal only when

β is moderate and η is low. Under these conditions, both social transmission and prescription-

induced opioid use remain contained, and the negative consequences brought by moral hazard do

not escalate significantly.

Under Cases d and e in Tables 2 and 3, the D-SAS-M model exhibits a unique inverted U-

shaped relationship between accessibility θ and overdose mortality DD,M , as shown in Figure 8.

This pattern, preserved by the D-SAS-M model, further supports the empirical findings of Packham

(2022) under certain parameter configurations.

Figure 8 also reveals a counterintuitive outcome: stronger moral hazard does not always increase

overdose deaths when social contagion is present. Holding accessibility constant at θ = 0.4 (left)
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and θ= 0.6 (right), higher moral hazard is associated with lower overdose mortality. Although this

result may seem surprising from a policy perspective, the model suggests that in some cases, moral

hazard could indirectly reduce long-term mortality by limiting the spread of OUD. An explicit

analysis of this phenomenon is provided in Appendix EC.3.
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Figure 8 The impact of naloxone accessibility θ on overdose mortality on the basis of D-SAS-M model. For each

plot, except for the moral hazard level, the other parameters remain the same, as detailed in Table EC.4

in Appendix EC.5.

7. Case Study

To demonstrate the optimal accessibility policy and its real-world applicability, we conduct a case

study based on data from the United States. We begin with the calibration of model parameters,

followed by the presentation of key findings and a sensitivity analysis. The section concludes with

a prospective analysis exploring the potential emergence of next-generation ultra-potent synthetic

opioids.

7.1. Calibration of Model Parameters

We begin by calibrating the model based on demographic and opioid-related data from the U.S. To

avoid underestimating Λ, we incorporate both the annual number of births and new immigrants,

as the U.S. is a major destination for immigration. Notably, annual immigration accounts for

approximately one-fourth of total births, making it a significant demographic component. Using

data from the Centers for Disease Control and Prevention (CDC) on births and the Office of

Homeland Security Statistics on immigration, we calculate the average combined annual inflow

(births and new immigrants) for 2010 – 2019. Accordingly, we set Λ= 4,977,864.

https://www.cdc.gov/nchs/data/nvsr/nvsr73/nvsr73-02.pdf
https://ohss.dhs.gov/sites/default/files/2024-03/2023_0818_plcy_yearbook_immigration_statistics_fy2022.pdf
https://ohss.dhs.gov/sites/default/files/2024-03/2023_0818_plcy_yearbook_immigration_statistics_fy2022.pdf
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To estimate the natural death rate α, we use U.S. population data from the U.S. Census Bureau,

total mortality data from the CDC, and opioid overdose deaths from CDC WONDER, covering

2010 – 2019. We subtract opioid-related deaths from total deaths to isolate mortality from all other

causes and estimate α via regression (see Appendix EC.4), obtaining α= 0.0083. It is worth noting

that, when estimating α, we do not account for emigration from the U.S. to other countries, as the

number of such emigrants is considered negligible. For instance, during the first quarter of 2024, only

344 individuals chose to renounce their U.S. citizenship and emigrate to other countries (Andrew

Mitchel International Tax Blog 2024).

We next calibrate the opioid-specific parameters. Based on Rzasa and Galinkin (2018), naloxone

successfully reverses 75% – 100% of overdoses. We conservatively set δl = 1− (0.75+1)/2 = 0.125.

For individuals without access to naloxone, overdose survival depends on emergency medical ser-

vices (EMS). Ornato et al. (2020) report that the risk of death increases by 10% for every minute of

delayed resuscitation. Survey data from Jakubowski et al. (2018) indicate that 43% of respondents

had witnessed at least one overdose, and we optimistically assume all witnesses call EMS. Given

typical EMS response times of 7 – 8 minutes (Johnson et al. 2021), we approximate the death rate

without naloxone as:

δh = (1− 0.43)+0.43× 0.7+0.8

2
= 0.8925.

For the recovery rate γ, Luo and Stellato (2024) set the recovery rate at 0.1 for individuals receiv-

ing treatment for OUD. However, only approximately 22% of individuals with OUD receive such

treatment (National Institute on Drug Abuse, 2023; Jones et al. 2023). Accordingly, we approxi-

mate the overall recovery rate as: γ = 0.1× 0.22 = 0.022. For the OUD onset rate η, Battista et al.

(2019) assume an annual opioid prescription rate of 0.15 per person and an OUD induction rate

of 0.00744 among those prescribed. Thus, η= 0.15× 0.00744 = 0.001116.

To estimate the overdose rate χ, we first approximate the overall opioid-related mortality rate,

which is expressed as χ(δh(1− θ)+ δlθ) in both the SAS and D-SAS models, and as χ(δh(1− θ)+

δlθ)+∆θδl in the SAS-M and D-SAS-M models. To this end, we use time series data on the U.S.

OUD population from 2010 to 2019 provided by Keyes et al. (2022), combined with opioid-related

mortality data. Based on these datasets, we construct a regression model to estimate the total

opioid-related mortality rate, which is found to be 0.0038 (see Appendix EC.4 for details). That

is,

χ(δh(1− θ)+ δlθ) = 0.0038 (7)

in the SAS and D-SAS models or

χ(δh(1− θ)+ δlθ)+∆θδl = 0.0038 (8)

https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html#par_textimage_739801612
https://www.cdc.gov/nchs/data/nvsr/nvsr74/nvsr74-04.pdf
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fnida.nih.gov%2Fsites%2Fdefault%2Ffiles%2Foverdose_data_1999-2023_1.16.25.xlsx&wdOrigin=BROWSELINK
https://www.andrewmitchel.com/blog/2024_05_2024-1st-quarter-published-expatriates?utm_source
https://www.andrewmitchel.com/blog/2024_05_2024-1st-quarter-published-expatriates?utm_source
https://nida.nih.gov/news-events/news-releases/2023/08/only-1-in-5-us-adults-with-opioid-use-disorder-received-medications-to-treat-it-in-2021
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in the SAS-M and D-SAS-M models.

According to Ornato et al. (2020), fewer than 5% of witnesses administered naloxone to opi-

oid overdose victims in the U.S. prior to 2020. This suggests that the likelihood of immediate

naloxone administration, denoted by θ, can be reasonably approximated as 5% during this period.

Substituting this value into (7), we obtain:

χ=
0.0038

0.05× 0.125+0.8925× 0.95
= 0.004449,

which applies to both SAS and D-SAS models.

Estimating the moral hazard parameter ∆ is particularly challenging (when moral hazard exists),

as behavioral responses to naloxone access are not directly observable. However, empirical studies

offer useful proxies. Difference-in-differences and other quasi-experimental designs exploit variation

in naloxone access laws to assess their effects on opioid misuse, crime, and health outcomes (Rees

et al. 2017, Doleac and Mukherjee 2022, Packham 2022). Survey-based studies further document

behavioral responses to overdose prevention programs (Wagner et al. 2010, Doe-Simkins et al.

2014). Packham (2022), for instance, report an 18.8% increase in emergency room visits following

the implementation of syringe exchange programs that promote naloxone distribution. This increase

reflects moral hazard effects. As a simple proxy, we assume that moral hazard contributes to 18.8%

of the original overdose rate, implying ∆= 0.188χ. Substituting this relation into (8) yields:

χ=
0.0038

0.05× 0.125+0.8925× 0.95+0.188× 0.05× 0.125
= 0.004443 and ∆= 0.000835

in the SAS-M and D-SAS-M models.

Finally, we estimate the transmission rate β in the D-SAS-M model using a regression-based

approach, yielding β = 0.036782 (see Appendix EC.4 for details). This implies that, on average,

each person in the U.S. has approximately 0.036782 effective contacts per year that could result in

the transmission of OUD (Hethcote 2000).

The next section presents the case study findings and assesses the robustness of the results

through sensitivity analysis.

7.2. Case Study Findings

We now present the representative cases for each model, derived from the calibrated parameter

estimates. As summarized in Table 4, full accessibility consistently emerges as the optimal policy

across all models, even when accounting for social transmission dynamics. This finding reinforces

the FDA’s recommendation to expand naloxone access as a central strategy for reducing overdose

mortality in the context of the opioid crisis.

Moreover, the observed difference ∆̄−∆ suggests that the moral hazard effect remains relatively

mild. This indicates that, at present, naloxone’s high efficacy in reversing opioid-induced respiratory
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Table 4 Representative cases for each model using calibrated parameters.

Model ∆̄−∆ β− (η+α+ γ) ωh ωl ωl,M Corresponding case θ∗

SAS – – – – – – 1

SAS-M 0.02644502 – – – – – 1

D-SAS – 0.005366 0.00015037 0.0001870 – Case 1b in Theorem 2 1

D-SAS-M 0.02644502 0.005366 0.00015043 – 0.0001859 Case 1b in Theorem 3 1

depression continues to outweigh potential compensatory increases in opioid misuse, supporting its

role as an effective harm reduction measure.

In addition, we observe that β− (η+α+γ)> 0, indicating that social interaction plays a critical

role in sustaining the opioid crisis in the U.S. Indeed, despite a steady decline in opioid prescribing

rates (American Medical Association, 2021), the crisis remains severe. As emphasized by Dasgupta

et al. (2018), although the misuse of prescribed opioids contributes to the development of OUD,

the crisis is fundamentally rooted in broader socioeconomic factors and social instability. These

findings underscore the importance of incorporating social transmission mechanisms into epidemic

models to better capture the persistent, socially driven dynamics of opioid addiction.

Sensitivity Analyses. We also examine how varying levels of moral hazard and overdose

rate influence the optimal naloxone accessibility policy in the SAS-M and D-SAS-M models.

The estimates of the overdose rate χ and moral hazard ∆ are jointly constrained to satisfy

χ (δh(1− θ)+ δlθ) + ∆θδl = 0.0038. As the overdose rate increases, the estimated moral hazard

decreases, leading to a lower ∆/χ ratio and a higher neutral-effect threshold. Naloxone’s life-

saving effectiveness is meaningfully compromised only when ∆/χ exceeds 6.14, corresponding to

an overdose rate below 0.0042577, at which point the optimal policy shifts to zero accessibility

in both models. While no clear empirical evidence currently suggests that moral hazard reaches

such extreme levels, this possibility cannot be entirely excluded, though under present real-world

conditions, full naloxone accessibility likely remains the optimal policy.

7.3. Prospective Analysis: The Potential Emergence of Next-generation
Ultra-potent Synthetic Opioids

We recognize that the continuous evolution of illicit opioids has resulted in increasingly potent and

hazardous substances. As highlighted by the concern expressed in Section 5.1, the progression from

traditional morphine to OxyContin (approximately 1.5 times more potent and widely regarded as

a catalyst of the U.S. opioid crisis), followed by heroin (roughly twice as potent), and now fentanyl

(50–100 times more potent), illustrates a clear pattern: each significant increase in potency has

triggered a new wave of the epidemic, heightening overdose risks and intensifying public health

challenges.

https://end-overdose-epidemic.org/wp-content/uploads/2021/09/AMA-2021-Overdose-Epidemic-Report_92021.pdf
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In this section, we further examine whether the FDA should proactively reassess its current

policy of expanding naloxone accessibility, particularly in anticipation of future scenarios where the

crisis may be driven by even more potent synthetic opioids—such as carfentanil (approximately

10,000 times stronger than morphine), ohmefentanyl (averaging 6,300 times more potent, with one

isomer reaching up to 18,000 times (Yong et al. 2003)), or other similarly powerful analogs. These

substances may substantially increase the overdose rate χ and reduce naloxone’s effectiveness, as

reflected by higher δl. On one hand, their high potential for physical dependence may lead to

more severe withdrawal symptoms when use is curtailed; on the other hand, increased physiological

tolerance may drive individuals to consume larger doses, further elevating overdose risk. Moreover,

animal studies suggest that naloxone may fail to reverse carfentanil-induced overdoses, leaving

individuals vulnerable to death, prolonged toxicity, and severe side effects (Langston et al. 2020).

Assuming no moral hazard, we retain the parameter estimates from Section 7.1 and focus on how

changes in χ and δl influence the optimal policy. In the basic SAS model, it is well established that

as long as naloxone provides even slight therapeutic benefit, full accessibility remains the optimal

policy. However, the dynamics shift in the D-SAS model. As illustrated in Figure 9, the emergence

of more potent and harmful opioids significantly alters the policy landscape. Notably, when both

the overdose rate and the likelihood of severe withdrawal or increased use are high, the optimal

policy shifts to zero accessibility (upper-right region of Figure 9) for FDA. For instance, if a potent

opioid elevates the overdose rate χ to six times its original value and raises δl to 0.6 (black dot in

Figure 9), the optimal level of accessibility drops to zero. Although we cannot definitively claim that

the upper-right region of Figure 9 precisely reflects future scenarios, it is important to recognize

that fentanyl already presents extreme risks, and the potency of carfentanil and ohmefentanyl

far exceeds that of fentanyl. We therefore recommend that the FDA carefully reassess naloxone

accessibility policies should these more dangerous opioids continue to proliferate.

When moral hazard is taken into account, the influence of more potent opioids on optimal

policy becomes more nuanced. It is not immediately clear whether such substances would raise or

lower the neutral effect threshold, as this depends on the relative changes in the overdose rate χ

and the mortality rate under naloxone treatment δl. In addition, notice that more potent opioids

may exacerbate moral hazard by increasing physiological dependence and reinforcing risky use

patterns. But, in the SAS-M model without interaction terms, the optimal naloxone accessibility

level remains at 1, provided that the moral hazard level stays below the neutral effect threshold

associated with these stronger substances.

In contrast, for the D-SAS-M model, the optimal accessibility may be completely different. Fig-

ure 10 illustrates how the combination of more potent opioids and moral hazard affects accessibility

decisions. For both plots, the lower regions of the upward-sloping black curve represent scenarios



27

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Overdose rate 1e 2

2

3

4

5

6

7

8

M
or

ta
lit

y 
ra

te
 

l w
ith

 n
al

ox
on

e

1e 1
* = 1 * = 0

Case 1b Case 1c Case 2b Case 2a

Figure 9 The impact of increasingly potent opioids on the optimal naloxone accessibility policy in the D-SAS

model. Each case shown in the legend corresponds to those defined in Theorem 2. Parameter values

are based on the estimates derived in Section 7.1.

where the neutral effect threshold exceeds the level of moral hazard, while the upper regions cor-

respond to cases where the moral hazard level surpasses the threshold. Note that, if more potent

opioids substantially reduce the effectiveness of naloxone in reversing overdoses, without causing

a corresponding significant increase in the overdose rate (represented by the upper-left regions

in both plots of Figure 10), the optimal policy shifts to zero accessibility. In such cases, expand-

ing naloxone access may backfire, increasing overdose incidents under conditions of low survival

likelihood.

Interestingly, when a highly potent and easily transmissible synthetic opioid results in both a

significantly elevated overdose rate χ and a higher mortality rate even with naloxone administra-

tion δl (corresponding to the upper-right regions in both plots of Figure 10), the optimal policy for

the FDA remains full naloxone accessibility (θ = 1). This finding differs from the result observed

in the D-SAS model, where full accessibility is not always optimal. Furthermore, we observe that

as the level of moral hazard increases, the upper-right and upper-left regions expand, indicating

that moral hazard has an increasingly pronounced effect on the structure of the optimal policy.

These findings together suggest that, in the presence of significant moral hazard and more lethal

synthetic opioids, the FDA may need to revisit and reassess naloxone accessibility policies with

heightened caution.

8. Conclusions and Future Directions

This paper examines a widely debated public health issue: the impact of expanded naloxone acces-

sibility on the opioid epidemic—specifically, on overdose mortality. While some empirical studies
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Figure 10 The impact of increasingly potent opioids on the optimal naloxone accessibility policy in the D-SAS-M

model. Each case shown in the legend corresponds to those defined in Theorem 3. Parameter values

are provided in Section 7.1.

suggest that broader naloxone access can unintentionally worsen the crisis through moral haz-

ard, others emphasize its life-saving role in preventing overdose deaths. To inform this debate, we

propose an analytical framework that characterizes optimal naloxone accessibility policies under

varying epidemic conditions.

Summary of Optimal Naloxone Accessibility Across Models. We develop four progressively richer

models, capturing the key epidemiological and behavioral dynamics of the opioid crisis. Across

these models, we characterize how the structure of the optimal naloxone accessibility policy evolves:

• SAS Model (Baseline): In the absence of moral hazard or social contagion, full naloxone

accessibility is always optimal.

• SAS-M Model (Incorporating Moral Hazard): Introducing moral hazard yields a bang-

bang policy structure. Full accessibility is optimal when the behavioral response to naloxone (∆)

remains below a critical threshold; otherwise, no public accessibility is preferable.

• D-SAS Model (Adding Social Contagion): Peer-driven opioid misuse introduces addi-

tional complexity. Full accessibility remains optimal when transmission rates are low or naloxone is

sufficiently effective, but under certain conditions, limited accessibility better mitigates mortality

risks.

• D-SAS-M Model (Moral Hazard and Social Contagion Combined): The most com-

prehensive model retains the bang-bang policy structure, with optimal accessibility determined by

the interaction between moral hazard, contagion dynamics, and naloxone effectiveness. Detailed

conditions are summarized in Tables 2 and 3.
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Policy Implications. Our analysis provides structured, transparent guidance for designing nalox-

one distribution policies that balance life-saving potential against unintended behavioral risks.

First, the explicit policy thresholds derived in our model link empirical estimates of naloxone

effectiveness and behavioral response to socially optimal access levels. This approach equips poli-

cymakers with a flexible decision-support tool that remains grounded in evolving evidence.

Second, the model highlights that while full accessibility is often optimal, especially in

prescription-driven epidemics, emerging dynamics—such as social contagion or the proliferation

of ultra-potent opioids like carfentanil—can fundamentally alter the optimal policy landscape.

Notably, we show that the relationship between naloxone accessibility and overdose mortality may

be non-monotonic, with moderate expansions in access potentially worsening outcomes before ben-

efits materialize at higher access levels.

A calibrated case study based on U.S. data illustrates the framework’s practical relevance. Under

current epidemic conditions, full accessibility remains optimal, consistent with existing regulatory

policies. However, this finding is conditional on present-day parameters; our results underscore that

shifting epidemic dynamics, particularly increased opioid potency or intensified social transmission,

may necessitate more restrictive or adaptive policies.

Importantly, even when the model recommends limited public accessibility (θ = 0), naloxone

remains available through medical channels, ensuring clinical use under professional judgment.

Real-world policy decisions must therefore integrate naloxone access with complementary interven-

tions—such as prevention, treatment expansion, and controlled prescribing—to holistically address

the opioid crisis.

Future Research Directions. Several extensions can enhance the policy relevance and realism of

our framework. First, while our analysis focuses on steady-state outcomes, policymakers often face

short-term versus long-term trade-offs. For example, during overdose surges, reducing immediate

mortality may take precedence, even if riskier behaviors increase future OUD prevalence. Extending

the model to incorporate finite-horizon, dynamic, or time-varying policies would provide valuable

insights for crisis management.

Second, accounting for the role of witnesses in naloxone administration would improve realism.

Overdose reversal often depends on bystander availability, meaning that accessibility alone may

overstate effective coverage (Ogeil et al. 2018).

Finally, cost-benefit analyses that incorporate both epidemiological outcomes and operational

considerations are essential. For instance, recent efforts to deploy naloxone vending machines in

Oklahoma were curtailed due to high costs and logistical challenges (2 News Oklahoma, 2024).

Future work should integrate such economic and operational factors to inform sustainable, effective,

and context-specific naloxone policies.

https://www.kjrh.com/news/local-news/oklahoma-pulls-plug-on-free-narcan-fentanyl-test-strip-vending-machines
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E-Companion: Expanding Naloxone Accessibility: A Lifesaver
or a Risky Setback?

EC.1. Analysis of the D-SAS Model with Mass-Action Incidence
βS(t)A(t)

The dynamics of the D-SAS model under mass action incidence, represented by the term βS(t)A(t), are

governed by the following system of differential equations:
Ṡ(t) = Λ− (α+ η)S(t)−βS(t)A(t)+ γA(t),

Ȧ(t) = ηS(t)+βS(t)A(t)−χθδlA(t)−χ(1− θ)δhA(t)−αA(t)− γA(t),

S(t)≥ 0, A(t)≥ 0.

(EC.1.1)

Let ρ= α(α+γ+η)−βΛ+χ(α+η) (θδl +(1− θ)δh). The only feasible equilibrium point of system (EC.1.1)

is given by:

(Sm,∗
D ,Am,∗

D ) =

(
ρ+2βΛ−

√
4βηΛ(α+χ(θδl +(1− θ)δh))+ ρ2

2αβ
,

√
4βηΛ(α+χ(θδl +(1− θ)δh))+ ρ2 − ρ

2β(α+χ(θδl +(1− θ)δh))

)
.

Given this equilibrium, our goal is to minimize the expected number of overdoses through an optimal

accessibility policy:

min
θ∈[0,1]

Dm
D (θ) := χ (θδl +(1− θ)δh)A

m,∗
D . (EC.1.2)

To analyze this objective, we define the following expressions:

Uh = α2 −βΛ+

√
(α(α+ γ+ η)−βΛ+χ(α+ η)δh)

2
+4βηΛ(α+χδh)+α(γ+ η),

Vh = χδh

 βΛ(η−α)+α(α+ η)(α+ γ+ η)+χ(α+ η)2δh√
(α(α+ γ+ η)−βΛ+χ(α+ η)δh)

2
+4βηΛ(α+χδh)

 ,

Ul = α2 −βΛ+

√
(α(α+ γ+ η)−βΛ+χ(α+ η)δl)

2
+4βηΛ(α+χδl)+α(γ+ η),

Vl = χδl

 βΛ(η−α)+α(α+ η)(α+ γ+ η)+χ(α+ η)2δl√
(α(α+ γ+ η)−βΛ+χ(α+ η)δl)

2
+4βηΛ(α+χδl)

 .

Theorem EC.1.1 (Optimal Accessibility under Mass Action Incidence). The solution to prob-

lem (EC.1.2) follows the structure below:

1. Full accessibility (θ= 1) is optimal if any of the following holds:

a. βΛ≤ γ(α+ η);

b. βΛ>γ(α+ η) and Vh ≤Uh;

c. βΛ>γ(α+ η), Vh > Uh, Vl < Ul, and Dm
D (θ= 1)≤Dm

D (θ= 0).

2. No accessibility (θ= 0) is optimal if any of the following holds:

a. βΛ>γ(α+ η) and Vl ≥Ul;

b. βΛ>γ(α+ η), Vh > Uh, Vl < Ul, and Dm
D (θ= 0)<Dm

D (θ= 1).

While the specific conditions differ slightly from those in Theorem 2 under standard incidence

βS(t)A(t)/N(t), the overall structure of the solution and the key insights remain consistent.
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EC.2. Equilibrium of the D-SAS and D-SAS-M Models

Let Ω =
√
ζ, where ζ = (α− β + γ + η + χ(1− θ)δh + χθδl)

2 + 4βη > 0. There are two sets of solutions for

equations 
Λ− (α+ η)S∗

D −β
S∗

DA
∗
D

S∗
D +A∗

D

+ γA∗
D = 0,

ηS∗
D +β

S∗
DA

∗
D

S∗
D +A∗

D

− (α+ γ+χθδl +χ(1− θ)δh)A
∗
D = 0,

including

S∗
D,1 =

αΛ(α+β+ γ+ η−Ω)−Λχ ((θ− 1)δh − θδl) (β− γ+ η+(θ− 1)χδh −Ω− θχδl)

2 (α2β+χ ((θ− 1)δh − θδl) (α(α−β+ γ+ η)+χ(α+ η) (θδl − (θ− 1)δh)))
,

A∗
D,1 =

2ηΛ

−(θ− 1)χ(α+2η)δh +α (α−β+ γ+ η+Ω)+ θχ(α+2η)δl
;

S∗
D,2 =

Λ(α (α+β+ γ+ η+Ω)−χ ((θ− 1)δh − θδl) (β− γ+ η+(θ− 1)χδh +Ω− θχδl))

2 (α2β+χ ((θ− 1)δh − θδl) (α(α−β+ γ+ η)+χ(α+ η) (θδl − (θ− 1)δh)))
,

A∗
D,2 =

2ηΛ

−(θ− 1)χ(α+2η)δh +α (α−β+ γ+ η−Ω)+ θχ(α+2η)δl
.

Notice that

S∗
D,2

A∗
D,2

=
α−β+ γ− η+ δh(χ− θχ)−Ω+ θχδl

2η
< 0 and

S∗
D,1

A∗
D,1

=
α−β+ γ− η+ δh(χ− θχ)+Ω+ θχδl

2η
> 0

because of (α−β+ γ+ η− θχδh +χδh + θχδl)
2 − ζ = −4βη < 0. Given that S∗

D,2 and A∗
D,2 have opposite

signs, that pair cannot represent a biologically valid equilibrium. On the other hand, it is easy to see that

A∗
D,1 > 0, and thus S∗

D,1 > 0 due to
S∗
D,1

A∗
D,1

> 0. Hence, the only admissible equilibrium for D-SAS model is(
S∗

D,A
∗
D

)
=
(
S∗

D,1,A
∗
D,1

)
.

Let ΩM =
√
ζM , where ζM = (α − β + γ + η + χ(1 − θ)δh + (χ +∆)θδl)

2 + 4βη > 0. Similarly, the only

admissible equilibrium for D-SAS-M model is

S∗
D,M =

αΛ(α+β+ γ+ η−ΩM)+Λ((θ− 1)χδh − θ(∆+χ)δl) (−β+ γ− η+ δh(χ− θχ)+ΩM + θ(∆+χ)δl)

2 (α2β+((θ− 1)χδh − θ(∆+χ)δl) (α(α−β+ γ+ η)+ (α+ η) (δh(χ− θχ)+ θ(∆+χ)δl)))
,

A∗
D,M =

2ηΛ

−(θ− 1)χ(α+2η)δh +α (α−β+ γ+ η+ΩM)+ θ(α+2η)(∆+χ)δl
.

EC.3. The Impact of Moral Hazard on Overdose Mortality

We define

T1 = (θ− 1)χδh + T2 − θχδl,

T2 =
√

(α−β+ γ+ η+χ(1− θ)δh +χθδl)2 +4βη,

∆∗ =
2η(α+β+ γ)+ (α−β+ γ)2 + η2 − 2χ(α−β+ γ+ η) ((θ− 1)δh − θδl)

2θδl(β−α− γ− η)
.

Proposition EC.3.1 (The Impact of Moral Hazard on Overdose Mortality). For a fixed acces-

sibility θ, we have:

Case 1. When β ≤ η+α+ γ, D′
D,M(∆)> 0.

Case 2. When β > η+α+ γ,

a. When T1 ≤ 0, D′
D,M(∆)< 0;

b. When T1 > 0, D′
D,M(∆)> 0 when 0<∆≤∆∗ and D′

D,M(∆)< 0 when ∆>∆∗.
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Proposition EC.3.1 clearly demonstrates that moral hazard could decrease overdose mortality. Although

moral hazard is typically viewed as harmful because it encourages riskier opioid use. However, in some cases,

the resulting increase in overdose deaths may disrupt OUD transmission, ultimately reducing its long-term

prevalence and fatalities.

EC.4. Parameter Estimations

Given the inherent challenges in directly observing and statistically quantifying A(t), Keyes et al. (2022)

employed three distinct calibration approaches to estimate the size of the U.S. OUD population from 2010 to

2019, aiming to mitigate potential underestimation of its true magnitude. In this study, we use the average

of the three calibrated estimates reported by Keyes et al. (2022) as our estimate for A(t).

The sequence S(t) is subsequently obtained by subtracting the estimated OUD population from the total

U.S. population for each corresponding year. Prior to estimating model parameters, we apply Gaussian kernel

smoothing to all time series data to reduce potential noise and improve estimation accuracy.

For notational convenience, we define t0 = 2010, t1 = 2011, · · ·, tT = 2019, and introduce the time index

set TT := {t1, t2, . . . , tT} (T = 9).

EC.4.1. Estimations

Estimation of natual death rate α. Let Dα(t) and D(t) denote the number of deaths unrelated and

related to opioid overdose, respectively. Then we have Dα(t) = Total Deaths in Year t−D(t) for the SAS

family of models. Next, we have a regression function:

Dα(t) = α(S(t)+A(t)) = αN(t),

where N(t) is the total population in the U.S. in year t. By the least squares method, the corresponding loss

function is

min
α

L(α) =
∑
t∈TT

(Dα(t)−αN(t))
2
. (EC.4.3)

By solving problem (EC.4.3), we obtain α= 0.0083.

Estimation of overall mortality rate regarding opioid overdose. In the SAS and D-SAS models, the

overall mortality rate due to opioid overdose, given by χ(1− θ)δh +χθδl, can be denoted as ϕ. In the SAS-

M and D-SAS-M models, the overall mortality rate, accounting for the effect of moral hazard, is given by

χ(1− θ)δh +χθδl +∆θδl, and is likewise denoted by ϕ. Thus, the regression function

D(t) = ϕA(t)

holds for all SAS family of models. By the least squares method, the corresponding loss function is

min
α

L(ϕ) =
∑
t∈TT

(D(t)−ϕA(t))
2
. (EC.4.4)

By solving problem (EC.4.4), we obtain ϕ= 0.0038.
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Estimation of tranmission rate β. By rearranging the discrete version of the D-SAS and D-SAS-M

models, we have: 
Λ−αS(t)+ γA(t)−S(t+1)+S(t)− ηS(t) = β

S(t)A(t)

N(t)
,

A(t+1)−A(t)+ (α+ γ+ϕ)A(t)− ηS(t) = β
S(t)A(t)

N(t)
.

Let

Y1(t) = Λ−αS(t)+ γA(t)−S(t+1)+S(t)− ηS(t),

Y2(t) =A(t+1)−A(t)+ (α+ γ+ϕ)A(t)− ηS(t),

X(t) =
S(t)A(t)

N(t)
.

By the least squares method, the corresponding loss function is

min
β

L(β) =
∑

t∈TT−1

∑
i=1,2

(Yi(t)−βX(t))2. (EC.4.5)

Notice that the time set in problem (EC.4.5) is TT−1 instead of TT because applying a first-order difference to

a time series results in the loss of one observation. Then, by solving problem (EC.4.5), we obtain β = 0.036782.

Note that in our linear estimations of parameters α, ϕ, and β, the associated p-values are all below 0.05,

indicating that these estimates are statistically significant and valid.

EC.4.2. Model Validation

After calibrating all the parameters, we assess the goodness of fit for the SAS family of models by substi-

tuting the calibrated values into the system and regenerating the trajectories of S(t) and A(t). Table EC.1

below reports the mean absolute percentage error (MAPE) between the model-generated sequences and the

corresponding training data for S(t) and A(t).

Table EC.1 MAPE results for the SAS family of models.

S(t) A(t) D(t)

SAS and SAS-M models 0.0073705 0.0885703 0.25271483

D-SAS and D-SAS-M models 0.0031949 0.0492427 0.21796289

We observe that all MAPE values are relatively small, indicating that the proposed SAS family of models

can effectively capture the progression of the opioid crisis. In particular, we note that the MAPE values

further decrease in the D-SAS and D-SAS-M models, which incorporate social interaction terms, compared to

their counterparts without such terms. This, to some extent, highlights the critical role of social transmission

in driving the dynamics of OUD.

We further conducted a back-testing analysis of overdose deaths by solving the SAS family of models. As

shown in Table EC.1, although the MAPE for opioid-related mortality is relatively higher than those for the

trajectories of S(t) and A(t), the predicted number of deaths remains within the same order of magnitude as

the observed data. Therefore, we consider this level of error to be acceptable, especially given that a MAPE

below 0.5 is widely regarded as indicative of a reasonable forecast (Chen et al. 2003).
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EC.5. Parameters used in Numerical Examples

Please see Table EC.2, Table EC.3 and Table EC.4.

Table EC.2 Parameter values used in Figure 5: η= 0.001, γ = 0.01, χ= 0.02, α= 0.006, β = 0.025, and

Λ= 200,000.

δh δl ωh ωl β−α− η− γ

Left plot 0.90 0.10 −0.000124 0.000132 0.008

Right plot 0.80 0.38 −9.2e−5 4.24e−5 0.008

Table EC.3 Parameter values used in Figure 6: η= 0.0003, γ = 0.016, α= 0.006, and Λ= 200,000.

β β−α− η− γ

Left plot 0.025 0.0027

Right plot Less than α+ η+ γ = 0.0223 suffices < 0

Table EC.4 Parameter values used in Figure 8: η= 0.001, γ = 0.001, α= 0.006, β = 0.025, and Λ= 200,000.

δh δl χ ωh ωl,M ∆̄

Left plot (Case 1d) 0.85 0.15 0.0250 −0.00033 0.0002564 0.11666

Left plot (Case 2d) 0.85 0.15 0.0250 −0.00033 0.0001850 0.11666

Right plot (Case 2e) 0.55 0.40 0.0125 0.00016 −0.000189 0.00469

Right plot (Case 1e) 0.55 0.40 0.0125 0.00016 −0.000298 0.00469

EC.6. Proofs of Theoretical Results

Proof of Proposition 1. Recall that the steady-state mortality is given by

D(θ) =
ηΛ[(1− θ)χδh + θχδl]

α(α+ γ+ η)+χ(α+ η) [θδl − (θ− 1)δh]
.

Differentiating with respect to θ, we obtain

D′(θ) =− αηΛχ(α+ γ+ η)(δh − δl)

[α(α+ γ+ η)− (θ− 1)χ(α+ η)δh + θχ(α+ η)δl]
2 < 0,

since δh > δl.

Thus, the mortality function D(θ) is strictly decreasing in θ, and the minimum is attained at θ∗ = 1.

Q.E.D.
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Proof of Theorem 1. Recall that

DM(θ) =
ηΛ((1− θ)χδh + θ(∆+χ)δl)

α(α+ γ+ η)+ (α+ η) (δh(χ− θχ)+ θ(∆+χ)δl)
.

Then, we have

D′
M(θ) =− αηΛ(α+ γ+ η) (χδh − (∆+χ)δl)

(α(α+ γ+ η)− (θ− 1)χ(α+ η)δh + θ(α+ η)(∆+χ)δl) 2
,

where the sign of D′
M(θ) depends on the sign of χδh − (∆ + χ)δl. When ∆ < ∆̄ = χ(δh−δl)

δl
, we have

(χδh − (∆+χ)δl)> 0 and thus θ∗ = 1. When ∆> ∆̄, however, we get that (χδh − (∆+χ)δl)< 0 and thus

θ∗ = 0. In particular, when ∆ = ∆̄, D′
M(θ) = 0 and, therefore, any accessibility is optimal. For clarity and

consistency, we directly set θ∗ = 0 in this case. Q.E.D.

Proof of Theorem 2. Recall that

A∗
D =

2ηΛ

−(θ− 1)χ(α+2η)δh +α (α−β+ γ+ η+Ω)+ θχ(α+2η)δl
,

where

Ω=
√
2η(α+β+ γ)+ (α−β+ γ)2 + η2 −χ ((θ− 1)δh − θδl) (2(α−β+ γ+ η)+ δh(χ− θχ)+ θχδl).

Then, we have

DD(θ) =
((1− θ)χδh + θχδl)2ηΛ

−(θ− 1)χ(α+2η)δh +α (α−β+ γ+ η+Ω)+ θχ(α+2η)δl
,

and

D′
D(θ) =

P (θ)

Ω(−(θ− 1)χ(α+2η)δh +α (α−β+ γ+ η+Ω)+ θχ(α+2η)δl) 2
,

where P (θ) =−2αηΛχ (δh − δl) (θχδh −χδh +Ω− θχδl) (α−β+ γ+ η− θχδh +χδh +Ω+ θχδl).

Next, we focus our attention on the derivative of P (θ):

P ′(θ) =
2αηΛχ2 (δh − δl)

2(α−β+ γ+ η) (α−β+ γ+ η− θχδh +χδh +Ω+ θχδl)

Ω
.

Note that the term (α−β+ γ+ η− θχδh +χδh +Ω+ θχδl) in the numerator in P ′(θ) is strictly positive since

Ω2 − (α−β+ γ+ η− θχδh +χδh + θχδl)
2 = 4βη > 0.

Thus, the sign of P ′(θ) only depends on the sign of (α− β + γ + η). We, therefore, consider the following

three cases:

Case 1: If β <α+ γ+ η, P (θ) monotonically increases.

Case 2: If β = α+ γ+ η, P (θ) is a constant.

Case 3: If β >α+ γ+ η, P (θ) monotonically decreases.

From the above three cases, we know that D′

D(θ) = 0 has at most one solution when β ̸= α+ γ+ η.

Next, we analyze each of the above cases separately.

Case 1. When β <α+ γ+ η, then P ′(θ)> 0 and P (θ) is increasing. Note that

P (θ= 1) = 2αηΛχ (δh − δl)Y1Y2,

where

Y1 =
(
χδl −

√
2η(α+β+ γ)+ (α−β+ γ)2 + η2 +χδl (2(α−β+ γ+ η)+χδl)

)
,
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Y2 =
(
α−β+ γ+ η+

√
2η(α+β+ γ)+ (α−β+ γ)2 + η2 +χδl (2(α−β+ γ+ η)+χδl)+χδl

)
.

It is easy to see that when β <α+ γ+ η, then Y1 < 0. Additionally, because(
2η(α+β+ γ)+ (α−β+ γ)2 + η2 +χδh (2(α−β+ γ+ η)+χδh)

)
− (α−β+ γ+ η+χδh)

2 = 4βη > 0,

we have Y2 > 0. Therefore, P (θ = 1) < 0 and thus P (θ) < 0 for θ ∈ [0,1]. Thus, DD(θ) is decreasing and

thereby, θ∗ = 1.

Case 2. When β = α+γ+η, then P (θ) can be simplified to −8αη2Λχ(α+γ+η) (δh − δl)< 0. In this case,

D′
D(θ)< 0 and thus DD(θ) is decreasing and θ∗ = 1.

Case 3. When β >α+ γ+ η, then P ′(θ)< 0 and thus P (θ) is decreasing. Note that in this case,

P (θ= 0) = 2αηΛχ (δh − δl)X1X2,

where

X1 =
(
χδh −

√
2η(α+β+ γ)+ (α−β+ γ)2 + η2 +χδh (2(α−β+ γ+ η)+χδh)

)
,

X2 =
(
α−β+ γ+ η+

√
2η(α+β+ γ)+ (α−β+ γ)2 + η2 +χδh (2(α−β+ γ+ η)+χδh)+χδh

)
.
(EC.6.6)

Importantly, even when β >α+ γ+ η, then X2,Y2 ≥ 0 , because(
2η(α+β+ γ)+ (α−β+ γ)2 + η2 +χδh (2(α−β+ γ+ η)+χδh)

)
− (α−β+ γ+ η+χδh)

2 = 4βη > 0;(
2η(α+β+ γ)+ (α−β+ γ)2 + η2 +χδl (2(α−β+ γ+ η)+χδl)

)
− (α−β+ γ+ η+χδl)

2 = 4βη > 0.

Now there could be three cases:

Case 3.1. When P (θ = 0)< 0 (i.e., X1 < 0⇔ ωh = (α− β + γ + η)2 + 4βη + 2χδh(α− β + γ + η)> 0),

then DD(θ) is decreasing and thus θ∗ = 1.

Case 3.2. When P (θ= 0)> 0 and P (θ= 1)< 0 (i.e., X1 > 0 and Y1 < 0 ⇔ ωh < 0 and ωl = (α−β+γ+

η)2 + 4βη + 2χδl(α− β + γ + η)> 0), D(θ) first increases and then decreases over the interval [0,1]. Thus,

θ∗ = argminθ∈{0,1}DD(θ) considering that the optimal solution can only exist at the extreme values. Note

that when DD,M(θ= 0) =DD,M(θ= 1), we set θ∗ = 0 for convenience.

Case 3.3. When P (θ= 1)> 0 (i.e., Y1 > 0⇔ ωl < 0), DD(θ) is increasing and thus θ∗ = 0.

Collecting the conditions under which θ∗ = 1 and θ∗ = 0 yields the desired characterization as stated.

Q.E.D.

Proof of Theorem 3. We begin by examining the special case where ∆= ∆̄. In this case, the D-SAS-M

model becomes independent of the accessibility level θ, as the life-saving benefits of naloxone exactly offset

the negative impact of moral hazard. The optimal solution is therefore not unique and may lie anywhere in

the interval [0,1]. For consistency with the rest of the analysis, we adopt zero accessibility as the default

choice.

We now proceed under the assumption that ∆ ̸= ∆̄. Recall that

A∗
D,M =

2ηΛ

−(θ− 1)χ(α+2η)δh +α (α−β+ γ+ η+ΩM)+ θ(α+2η)(∆+χ)δl
,

where

ΩM =
√
(α−β+ γ+ η+χ(1− θ)δh +(χ+∆)θδl)2 +4βη.
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Then, we have

DD,M(θ) =
2ηΛ((1− θ)χδh + θ(∆+χ)δl)

−(θ− 1)χ(α+2η)δh +α (α−β+ γ+ η+ΩM)+ θ(α+2η)(∆+χ)δl
, (EC.6.7)

and

D′
D,M(θ) =

Q(θ)

ΩM (−(θ− 1)χ(α+2η)δh +α (α−β+ γ+ η+ΩM)+ θ(α+2η)(∆+χ)δl) 2
,

where

Q(θ) =−2αηΛ(χδh − (∆+χ)δl) ((θ− 1)χδh +ΩM − θ(∆+χ)δl) (α−β+ γ+ η+ δh(χ− θχ)+ΩM + θ(∆+χ)δl) .

Therefore,

Q′(θ) =
2αηΛ(α−β+ γ+ η) (χδh − (∆+χ)δl)

2 (α−β+ γ+ η+ δh(χ− θχ)+ΩM + θ(∆+χ)δl)

ΩM

,

Q(θ= 0) = 2αηΛ(χδh − (∆+χ)δl)X1X2,

Q(θ= 1) = 2αηΛ(χδh − (∆+χ)δl)Y1,MY2,M ,

where X1 and X2 are defined in (EC.6.6) as well as

Y1,M =
(
−
√

2η(α+β+ γ)+ (α−β+ γ)2 + η2 +(∆+χ)δl (2(α−β+ γ+ η)+ (∆+χ)δl)+ (∆+χ)δl

)
,

Y2,M =
(
α−β+ γ+ η+

√
2η(α+β+ γ)+ (α−β+ γ)2 + η2 +(∆+χ)δl (2(α−β+ γ+ η)+ (∆+χ)δl)+ (∆+χ)δl

)
> 0.

Since Q′(θ) = 0 if and only if ∆= ∆̄, provided that α−β+ γ+ η ̸= 0, the sign of Q′(θ) depends solely on

the sign of (α−β+ γ+ η). We therefore consider the following cases:

Case 1: If β <α+ γ+ η, then Q(θ) monotonically increases.

Case 2: If β = α+ γ+ η, then Q(θ) is a constant.

Case 3: If β >α+ γ+ η, then Q(θ) monotonically decreases.

From the three cases above, it follows that D′
D,M(θ) = 0 has at most one solution when β ̸= α+ γ+ η.

Next, we analyze each of the above cases.

Case 1. When β < α+ γ+ η, then Q′(θ)> 0 so Q(θ) is increasing. In this case, we have X1,Y1,M < 0 and

X2,Y2,M > 0. Thus, the sign of Q(θ = 0) and Q(θ = 1) also depends on the sign of (χδh − (∆+χ)δl). There

could be two cases:

Case 1.1. When ∆< ∆̄, we have Q(θ= 0),Q(θ= 1)< 0. Thus D′
D,M(θ)< 0 and θ∗ = 1.

Case 1.2. When ∆> ∆̄, we have Q(θ= 0),Q(θ= 1)> 0. Thus, D′
D,M(θ)> 0 and θ∗ = 0.

Case 2. When β = α+ γ + η, then Q(θ) is reduced to −8αη2Λ(α+ γ + η) (χδh − (∆+χ)δl). There could

be two cases:

Case 2.1. When ∆< ∆̄, we have Q(θ)< 0. Thus, D′
D,M(θ)< 0 and θ∗ = 1.

Case 2.2. When ∆> ∆̄, we have Q(θ)> 0. Thus, D′
D,M(θ)> 0 and θ∗ = 0.

Case 3. When β >α+ γ+ η, Q′(θ)< 0 and thus Q(θ) is decreasing. There could be three cases:

Case 3.1. When Q(θ= 0)≤ 0:

Case 3.1.1. When ∆< ∆̄ and X1 < 0 (i.e., ωh = (α−β+γ+ η)2+4βη+2χδh(α−β+γ+ η)> 0), we

have Q(θ)< 0 for all θ ∈ [0,1]. Thus, D′
D,M(θ)< 0 and θ∗ = 1.

Case 3.1.2. When ∆> ∆̄ and X1 > 0 (i.e., ωh < 0), we have Q(θ)< 0 for all θ ∈ [0,1]. Thus, D′
D,M(θ)<

0 and θ∗ = 1.
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Case 3.1.3. When X1 = 0 (i.e., ωh = 0), we have Q(θ = 0) = 0 and Q(θ) < 0 for all θ ∈ (0,1]. Thus,

θ∗ = 1.

Case 3.2. When Q(θ = 0)> 0 and Q(θ = 1)< 0, then DD,M(θ) first increases and then decreases over

the interval [0,1]:

Case 3.2.1. When ∆< ∆̄, X1 > 0 (i.e., ωh < 0) and Y1,M < 0 (i.e., ωl,M = (α− β + γ + η)2 + 4βη +

2(χ+∆)δl(α−β+ γ+ η)> 0), θ∗ = argminθ∈{0,1}DD,M(θ) because, in this case, the optimal solution exists

only on the boundaries.

Case 3.2.2. When ∆ > ∆̄, X1 < 0 (i.e., ωh > 0) and Y1,M > 0 (i.e., ωl,M < 0), θ∗ =

argminθ∈{0,1}DD,M(θ) because, in this case, the optimal solution exists only on the boundaries.

Note that when DD,M(θ= 0) =DD,M(θ= 1), we set θ∗ = 0 for convenience.

Case 3.3. When Q(θ= 1)≥ 0:

Case 3.3.1. When ∆ < ∆̄ and Y1,M > 0 (i.e., ωl,M < 0), we have Q(θ) > 0 for all θ ∈ [0,1]. Thus,

D′
D,M(θ)< 0 and θ∗ = 0.

Case 3.3.2. When ∆ > ∆̄ and Y1,M < 0 (i.e., ωl,M > 0), we have Q(θ) > 0 for all θ ∈ [0,1]. Thus,

D′
D,M(θ)< 0 and θ∗ = 0.

Case 3.3.3. When Y1,M = 0 (i.e., ωl,M = 0), we have Q(θ= 1) = 0 and Q(θ)> 0 for all θ ∈ (0,1]. Thus,

θ∗ = 0.

Collecting the conditions under which θ∗ = 1 and θ∗ = 0 yields the desired characterization stated. Q.E.D.

Proof of Theorem EC.1.1. The full expression of Dm
D (θ) is

Dm
D (θ) =

2ηΛ(δh(χ− θχ)+ θχδl)

ρ+
√
ρ2 +4βηΛ(α+ δh(χ− θχ)+ θχδl)

,

and

D′m
D (θ) =

P(θ)(
ρ+

√
ρ2 +4βηΛ(α+ δh(χ− θχ)+ θχδl)

)2 ,
where

P(θ) =− 2ηΛχ (δh − δl)
(
ρ+

√
ρ2 +4βηΛ(α+χ(θδl +(1− θ)δh))

)
+2ηΛχ (δh − δl)

(
χ(θδl +(1− θ)δh)

(
η+α+

βΛ(η−α)+α(α+ η)(α+ γ+ η)+χ(α+ η)2(θδl +(1− θ)δh)√
ρ2 +4βηΛ(α+χ(θδl +(1− θ)δh))

))
.

Additionally, we have

P(θ= 0) = 2ηΛχ(δh − δl)(Vh −Uh), P(θ= 1) = 2ηΛχ(δh − δl)(Vl −Ul), and

P ′(θ) =
8αβη2Λ2χ3 (δh − δl)

2 ((1− θ)δh + θδl) (αγ−βΛ+ γη)

(ρ2 +4βηΛ(α+ δh(χ− θχ)+ θχδl)) 3/2
.

Note that the sign of P ′(θ) only depends on the sign of (αγ − βΛ+ γη) because both the denominator of

P ′(θ) and 8αβη2Λ2χ3 (δh − δl)
2 ((1− θ)δh + θδl) are all greater than 0. We, therefore, consider the following

cases:

Case 1: If βΛ<αγ+ γη, then P(θ) monotonically increases.

Case 2: If βΛ= αγ+ γη, then P(θ) is a constant.
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Case 3: If βΛ>αγ+ γη, then P(θ) monotonically decreases.

From the above three cases, we know that D′m
D (θ) = 0 has at most one solution when βΛ ̸= αγ+ γη.

Next, we analyze each of the above cases.

Case 1. When βΛ<αγ+ γη, we first define

A= α(α+ γ+ η), C = βΛ(η−α)+α(α+ η)(α+ γ+ η),

E =
√

α2(α+ γ+ η)2 − 2αβΛ(α+ γ− η)+β2Λ2 +χδl (2βΛ(η−α)+ 2α(α+ η)(α+ γ+ η)+χ(α+ η)2δl),

F = χδl (2βΛ(η−α)+ 2α(α+ η)(α+ γ+ η)+χδl((α+ η)(α+ γ+ η)−βΛ))

= χδl (2C+χδl((α+ η)(α+ γ+ η)−βΛ)) .

Note that C > 0 because C > (αγ+ γη)(η−α)+α(α+ η)(α+ γ+ η) = (α+ η) (α2 +αη+ γη)> 0 when α> η

and C must be more than 0 when α≤ η. Additionally, we have F > 0 because

F >χδl (2C+χδl((α+ η)(α+ γ+ η)− γ(α+ η))) = χδl
(
2C+χδl(α+ η)2

)
> 0.

Next, we have

Vl −Ul =
−(A−βΛ)2 +(βΛ−A)E −χδlC − 4αβΛη√

(α(α+ γ+ η)−βΛ+χ(α+ η)δl) 2 +4βηΛ(α+χδl)
.

Since −(A−βΛ)2 −χδlC − 4αβΛη < 0 and(
−(A−βΛ)2 −χδlC − 4αβΛη

)2 − ((βΛ−A)E)2

=4αβηΛ
(
α2(α+ γ+ η)2 − 2αβΛ(α+ γ− η)+β2Λ2 +F

)
=4αβηΛ

(
α2(α+ γ+ η)2 − 2αβΛ(α+ γ+ η)+β2Λ2 +4αβΛη+F

)
=4αβηΛ

(
(A−βΛ)2 +4αβΛη+F

)
> 0,

we obtain that Vl −Ul < 0 and thus, P(θ= 1)< 0. Consequently, D′m
D (θ)< 0 and θ∗ = 1.

Case 2: When βΛ= αγ+ γη, then P (θ) can be reduced to

P(θ) =−4ηΛχ(α+ η)α (δh − δl)< 0.

Thus, D′m
D (θ)< 0 and θ∗ = 1.

Case 3: When βΛ>αγ+ γη:

Case 3.1: When P(θ= 1)≥ 0 (i.e., Vl ≥Ul), then P(θ)≥ 0 for θ ∈ [0,1]. Thus, D′m
D (θ)≥ 0 and θ∗ = 0.

Case 3.2: When P(θ= 0)> 0 and P(θ= 1)< 0 (i.e., Vl < Ul and Vh > Uh), then P(θ) has a unique root

between 0 and 1, which means that Dm
M(θ) first increases and then decrease over the interval [0,1]. Thus,

θ∗ = argminθ∈{0,1}Dm
M(θ) considering that the optimal solution can only exist on the boundaries. Note that

when Dm
M(θ= 0) =Dm

M(θ= 1), we set θ∗ = 0 for convenience.

Case 3.3: When P(θ= 0)≤ 0 (i.e., Vh ≤Uh), then P (θ)≤ 0 for θ ∈ [0,1]. Thus, D′m
D (θ)≤ 0 and θ∗ = 1.

Collecting the conditions under which θ∗ = 1 and θ∗ = 0 yields the desired characterization stated. Q.E.D.
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Proof of Proposition EC.3.1. In (EC.6.7), we have obtained

DD,M =
2ηΛ((1− θ)χδh + θ(∆+χ)δl)

−(θ− 1)χ(α+2η)δh +α (α−β+ γ+ η+ΩM)+ θ(α+2η)(∆+χ)δl
,

where

ΩM =
√

(α−β+ γ+ η+χ(1− θ)δh +(χ+∆)θδl)2 +4βη.

For a fixed θ, we have

D′
D,M(∆) =

L(∆)

ΩM (−(θ− 1)χ(α+2η)δh +α (α−β+ γ+ η+ΩM)+ θ(α+2η)(∆+χ)δl) 2
,

where

L(∆) = 2αηθΛδl (θχδh −χδh +ΩM −∆θδl − θχδl) (α−β+ γ+ η− θχδh +χδh +ΩM +∆θδl + θχδl) .

Next, we have

L′(∆) =
2αηθ2Λδ2l (α−β+ γ+ η) (α−β+ γ+ η− θχδh +χδh +ΩM +∆θδl + θχδl)

ΩM

.

Note that (α−β+ γ+ η− θχδh +χδh +ΩM +∆θδl + θχδl)> 0, and thus the sign of L′(∆) only depends on

the sign of (α−β+ γ+ η). We, therefore, consider the following cases:

Case 1: If β ≤ α+ γ+ η, then L(∆) monotonically increases.

Case 2: If β >α+ γ+ η, then L(∆) monotonically decreases.

From the above three cases, we know that D′
D,M(∆) = 0 has at most one solution when β ̸= α+ γ+ η. Next,

we analyze each of the above cases.

Case 1. When β ≤ α+ γ+ η, there are two cases.

Case 1.1. When β < α + γ + η, it is easy to check that (θχδh −χδh +ΩM −∆θδl − θχδl) > 0. Thus

L(∆)> 0 and then D′
D,M(∆)> 0.

Case 1.2. When β = α+ γ+ η, L(∆) is reduced to 8αη2θΛδl(α+ γ+ η)> 0. Then D′
D,M(∆)> 0 .

Thus, when β ≤ α+ γ+ η, D′
D,M(∆)> 0 .

Case 2. When β >α+ γ+ η, we have

lim
∆→0

L(∆) = 2αηθΛδlT1T3,

where
T1 = (θ− 1)χδh + T2 − θχδl,

T3 = α−β+ γ+ η+ δh(χ− θχ)+ T2 + θχδl,

T2 =
√
(α−β+ γ+ η+χ(1− θ)δh +χθδl)2 +4βη.

There are two cases.

Case 2.1. When T1 ≤ 0, L(∆)< 0 for ∆∈ [0,+∞). Thus, D′
D,M(∆)< 0.

Case 2.2. When T1 > 0, let (θχδh −χδh +ΩM −∆θδl − θχδl) = 0, we have a solution

∆∗ =
2η(α+β+ γ)+ (α−β+ γ)2 + η2 − 2χ(α−β+ γ+ η) ((θ− 1)δh − θδl)

2θδl(β−α− γ− η)
> 0.

Note that when T1 > 0, we have 2η(α+ β + γ) + (α− β + γ)2 + η2 − 2χ(α− β + γ + η) ((θ− 1)δh − θδl)> 0.

This is because we need to ensure that

(T2)
2 − ((1− θ)χδh + θχδl)

2 > 0⇒ 2η(α+β+ γ)+ (α−β+ γ)2 + η2 − 2χ(α−β+ γ+ η) ((θ− 1)δh − θδl)> 0.

Thus, D′
D,M(∆)> 0 when ∆∈ (0,∆∗] and D′

D,M(∆)< 0 when ∆>∆∗.

Q.E.D.
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