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Problem definition: We study the dynamics of hybrid hospitals offering on-site and remote hospitalization

through telemedicine. These new healthcare models require efficient operational policies to balance costs,

efficiency, and patient well-being. Our study addresses two primary operational questions: (i) how to direct

patient admission and call-in policies based on individual characteristics and proximity and (ii) how to

determine the optimal allocation of medical resources between these two hospitalization options.

Methodology/results: We develop a model that uses Brownian Motions to capture the patient’s health

evolution during remote/on-site hospitalization. By optimizing call-in policies, we find that remote hospital-

ization is cost-effective only for moderately distant patients, where the call-in threshold has a non-monotonic

relationship with travel time. Additionally, we find that the impact of scarce resources is reflected through

simultaneous increase of both remote and on-site costs by the same value, without altering the solution struc-

ture under abundant resources. Lastly, we identify a non-monotonic relationship between the total medical

resources and the workload allocation, depending on the recovery rates and the hospital proximity.

Managerial implications: Contrary to the widely held view that telemedicine can mitigate rural and

non-rural healthcare disparities, our research suggests that on-site care may actually be more cost-effective

than remote hospitalization for patients in distant locations, due to increased risks for remote patients who

are called in to the hospital. This finding may be of particular concern in light of the growing number of

“hospital deserts” amid recent rural hospital closures, as these communities may in fact not be well-served

through at-home care. Such insights on cost-effectiveness, proximity, and patient deterioration under remote

care can guide healthcare decision-makers and policymakers in shaping future healthcare delivery and design.
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1. Introduction

The COVID-19 pandemic has significantly propelled the adoption of virtual services, with

telemedicine now playing a prominent role in the realm of healthcare (Bokolo 2020, Kadir 2020).

Telemedicine facilitates the remote delivery of clinical services through real-time communication,

connecting patients and healthcare providers via video conferencing and remote monitoring (Mon-

aghesh and Hajizadeh 2020). These virtual services offer several advantages, such as cost savings

related to travel and reduced exposure to diseases, which may ultimately enhance the efficiency of

healthcare delivery (Hur and Chang 2020).

Recent advancements in telemedicine now enable sophisticated remote medical services, including

home hospitalization as an alternative to traditional on-site care. Sheba Beyond, a pioneering

virtual hospital affiliated with Sheba Medical Center and thus ranked among the world’s top

medical systems by Newsweek, offers remote examination, monitoring, and online rehabilitation

programs. Their goal is to enhance accessibility to top-tier medical expertise for all prospective

patients, aligning with the prediction that remote hospitalization will become a widespread offering

among major hospital networks. Indeed, virtual hospitals are becoming popular across the world,

such as in Australia (Hutchings et al. 2021), China (Francis et al. 2021), and the United States.

For example, in the US, this trend is well underway: 186 hospitals participated in the “Acute

Hospital Care at Home” program during its inaugural year (Clarke et al. 2021), which permitted

Medicare-certified hospitals to deliver inpatient-level care to patients within the comfort of their

homes. A recent McKinsey & Company comprehensive report stated that virtual hospitals have

the potential to provide significant relief to overburdened healthcare systems. In particular, they

project that virtual hospitals could unlock bed capacity, reduce the need to build new hospitals

and save hundreds of millions of dollars (Boldt-Christmas et al. 2023). The American Hospital

Association (AHA) has similarly promoted the concept through the Hospital-at-Home components

of their “Value Initiative” public cost-reduction campaign (Americal Hospital Association, 2020).

Often times, such campaigns naturally associate the potential benefits of home hospitalization

with rural patients. Frequently referred to as “hospital deserts” due to their significant distance

https://beyond-en.sheba.co.il/
https://www.newsweek.com/worlds-best-hospitals-2022
https://www.mckinsey.com/industries/healthcare/our-insights/virtual-hospitals-could-offer-respite-to-overwhelmed-health-systems
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from healthcare centers, many rural communities face healthcare accessibility challenges worldwide,

affecting millions of individuals in large countries like the United States, China, Brazil, and England

(Behrman et al. 2021, Jiao et al. 2021, Gong et al. 2021, Noronha et al. 2020, Verhagen et al. 2020).

These under-served areas lack proximity to medical facilities, leading to delays in seeking care,

limited access to timely interventions, and increased health risks. Transportation hurdles further

complicate the problem, as rural residents must contend with limited options and lengthy journeys,

often resulting in worsened health conditions by the time they reach a hospital (Kelly et al. 2014).

Additionally, as highlighted in a recent report by the Center for Healthcare Quality and Payment

Reform (CHQPR), over 600 rural hospitals in the United States, representing more than 30% of

the nation’s rural healthcare facilities, face the risk of closure (Adams 2023).

This tenuous state of rural healthcare offerings is compounded by growing evidence of a disparity

in the health conditions of people in rural areas relative to those who live in non-rural areas (Lewis

2022). For example, in the United States, data from the National Vital Statistics System has

shown that in the two decades from 1999 to 2019, although the overall death rate (deaths per

100,000) has declined, a widening gap has emerged between the rates of death in rural and non-

rural communities (Curtin and Spencer 2021). Even more troublesome is that this gap is consistent

across the 10 leading causes of death, with the widest disparities occurring in the fatality rates

for heart disease, cancer, and chronic lower respiratory diseases. Furthermore, these trends are

consistent when controlling for demographic factors like age, race, and sex (Cross et al. 2021).

Similarly, data shows that the rate of death from the COVID-19 pandemic in non-metropolitan

areas has out-paced the same rate in metropolitan ones (Ullrich and Mueller 2023). This heightened

deadliness of serious disease in rural communities in the US is coupled with the noted growth of

addiction, overdoses, and suicide (so-called “deaths of despair,” Case and Deaton 2015, 2017) and

increased mortality of unintentional injuries, such as from traffic and firearms (Olaisen et al. 2019).

While telemedicine networks have shown promise in improving healthcare in rural areas (Ishfaq

and Raja 2015), and could also potentially serve as a viable alternative to mitigate the impact

https://medcitynews.com/2023/07/rural-hospital-insurance-finance/
https://medcitynews.com/2023/07/rural-hospital-insurance-finance/
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of hospital closures, our paper underscores a critical issue: patients residing in remote areas, who

ostensibly stand to gain the most from home hospitalization, also face the highest risks when

called-in to the hospital. Such calls may result in patients arriving in deteriorated states, ultimately

leading to prolonged and more expensive hospitalizations. Hence, hybrid hospitals that offer both

on-site and remote hospitalization services present new operational challenges, necessitating the

development of innovative models and policies that ensure cost-effectiveness while maintaining the

highest standard of patient care.

More specifically, our study focuses on a hybrid hospital setting that incorporates a virtual

Emergency Department (ED), which patients can access when they experience illness. In this model,

medical professionals conduct remote examinations and consultations with patients. Subsequently,

based on their assessment, doctors decide whether to admit the patient for remote hospitalization

or advise immediate travel to the hospital for on-site admission. For patients admitted remotely,

their physical examination is conducted using telehealth technologies, such as TytoCare®, a digital

platform specifically designed for remote physical assessments (Barkai et al. 2022). During these

examinations, both data and visual information are recorded and transmitted to the physician.

Then, a summary of the visit is provided, which may include orders for blood tests, medication

orders and instructions. Remotely admitted patients have two potential outcomes: recovery with

subsequent discharge, or, in the event of health deterioration, they are advised to travel to the

hospital for on-site admission and the continuation of their treatment. We refer to this as a “call-in”

scenario.

Therefore, the first fundamental question we address is how to optimally set the call-in policy so

as to minimize the total operational cost. That is, based on each patient’s characteristics, decide

whether to admit the patient remotely or on-site. In the former case, one also needs to decide at

which health condition to call the patient in to the hospital. The marginal improvement cost in

each hospitalization option, as well as patient’s proximity to the hospital and anticipated further

deterioration while traveling—all play important roles in these decisions.
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The second question we address in this paper is related to the way the hybrid hospital/ward

allocates its resources. In Sheba Beyond, the medical staff of each hybrid ward is divided into

two teams, each is responsible either for remote or on-site hospitalized patients, which is what we

assume throughout this paper. Therefore, the question is how to allocate these resources to these

two groups. This decision goes hand in hand with the call-in policy, since the decision on when to

call in patients determines the workload for each group.

To address these two questions, we introduce a model that captures patients’ health condition via

an acuteness “score” that aggregates clinical measurements for supporting discharge decisions. Such

scores are common practice. The Aldrete system, for example, is an acuteness score to determine

readiness for discharge post-surgery (Aldrete 1994); other scores were developed for specific diseases

such as pneumonia (e.g., Capelastegui et al. 2008), for cardiac patients (the Anderson-Wilkins

acuteness score; Anderson et al. 1992), or for patient assessment in SNFs and rehabilitation facilities

(e.g., the ADL score; Bowblis and Brunt 2014). We capture the system’s dynamics by modeling the

individual evolution of the patient’s health condition through remote and on-site hospitalization

using Brownian Motions (BMs) whose parameters depend on patients’ characteristics. That allows

us to capture the fact that patient’s health score improves, on average, while being treated, yet may

nevertheless deteriorate due to the randomness in recovery across patients. The relevant properties

in our analysis are hitting time statistics—averages and probabilities—that determine length of

stay (LOS) in both hospitalization options and the call-in likelihood due to deterioration at home.

Our work sheds light on the complex operational aspects in managing hybrid hospitals. The

questions we address in this paper are ones of design. Rather than taking the service content at

each location as fixed, we optimize it to meet system-level goals by setting the treatment mix of

each patient profile as well as the allocation of resources between the two hospitalization locations.

The following are the main contributions of this paper:

• As a modeling contribution, we study the operations, design, and management of an innovative

acute-care system comprising both on-site and remote hospitalization. By capturing the random
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dynamics of patients’ health scores and this evolution’s dependence on the manner of care, we

provide a practical framework for determining the optimal treatment blend and call-in policy based

on individual patient characteristics and their travel time to the hospital. We explicitly address

critical questions that hinge on two essential factors: (i) the disparity in marginal hospitalization

costs between on-site and remote hospitalization, and (ii) the feasibility of call-in as opposed to

exclusive remote hospitalization.

• For policy-level insights, we find that remote hospitalization will be cost-effective only for

patients residing at a moderate distance from the hospital, and only if their marginal hospitalization

cost exceed those at the hospital. Our model identifies that the optimal call-in threshold is non-

monotonic as a function of patient distance; furthermore, the range of distances for which remote

hospitalization is viable will shrink for patients with poorer health scores.

Both intuition and the nascent public policy around home hospitalization suggests that remote

hospitalization and telemedicine could offer a geographic panacea for health outcomes, enhancing

healthcare access in remote regions and bridge the disparities between rural and non-rural areas.

Our research, however, demonstrates that due to the increased risk of deterioration and lengthy

travel times to the hospital, it could be preferable for the hospital to direct distantly located

patients to on-site care.

In light of the broadly-documented evidence of worse baseline health conditions in rural commu-

nities, we discuss how our model’s insights caution against the prevailing assumption that remote

hospitalization would benefit rural patients.

• To provide insights for managing both on-site and remote hospitalization, we focus on the

development of a hybrid hospital model, where a fixed amount of resources, such as medical pro-

fessionals, must be distributed between the two modes of care. Three distinct behavioral cases,

contingent on the ratio of marginal improvement rates, are characterized within the system’s work-

load and feasibility region: they both can exhibit an increasing, decreasing, or unimodal pattern

in relation to the call-in threshold. Leveraging these findings, we subsequently derive insights into
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optimal resource allocation. We find that the impact of scarce resources is a simultaneous increase

of both remote and on-site cost rates by the same value, without altering the solution structure

and properties from the case where resources are abundant. Notably, we observe that the optimal

allocation of resources is non-monotone with the total amount of resources. In some cases, as the

total resource pool becomes more limited, a larger proportion may be allocated to one hospital-

ization option while reducing the allocation to the other. This highlights the dynamic nature of

resource allocation in hybrid hospitals.

The rest of the paper is organized as follows. Section 2 includes a brief review of the related

literature. In Section 3, we introduce our model and the optimization problem. In Section 4, we

include preliminary analyses on the system’s workload and feasibility region. The main results of

the paper are presented in Section 5. Lastly, in Section 6, we provide some concluding remarks and

suggest a few directions for future research. All proofs appear in the appendix.

2. Literature Review

This paper is related to two main lines of literature. The first is applying stochastic modeling to

study the operations of health services. The second is related to health progression modeling. We

provide here a brief review of the related literature along these two streams.

Stochastic modeling and queueing models have been used to address various healthcare appli-

cations to derive operational insights and policies (e.g., Mills et al. 2013, Shi et al. 2016). One of

the challenges in managing such complex healthcare systems is how to allocate scarce resources

and prioritize patients over these resources (e.g., Sun et al. 2018). While classical models in queu-

ing theory assume that service times are independent random variables with fixed distributions,

empirical studies show that there is flexibility in setting transfer/discharge decisions in healthcare;

these decisions, in turn, have an effect on patient outcomes (Kc and Terwiesch 2012, Bartel et al.

2020). Here, we build upon prior works that have shown the benefit of modeling in finer detail,

such as the controlled queueing models studied in works like Hopp et al. (2007) and Chan et al.

(2014).
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Protocols for adaptive discharge of individual patients, from a single station, were developed

in Shi et al. (2021), where a Markov decision process (MDP) is integrated with data to support

discharge decisions from inpatient wards. They suggest an efficient dynamic heuristic that balances

personalized readmission-risk prediction and ward congestion. Armony and Yom-Tov (2021) devel-

oped discharge rules specifically for hematology patients. For these, a longer hospital stay carries

risk (infections) but also the ability to take care of such infections.

We go beyond a single-station analysis to study a new hospital setting—the hybrid hospital,

which includes an on-site and remote hospitalization. Our focus includes decisions on patient

hospitalization option, call-in thresholds for remote patients, and resource allocation, considering

patient characteristics and distance from the hospital.

Different health progression models were developed to address operational questions. Shi et al.

(2021), Deo et al. (2013) and Nambiar et al. (2020) explicitly modeled the individual patient

progression by using a Markov chain progression model. Grand-Clément et al. (2020) used an MDP

to describe the evolution of patients’ health condition and derive a proactive transfer policy to a

hospital Intensive Care Unit (ICU). Bavafa et al. (2019) modeled patient health dynamics using

a Markovian continuous-time framework with three states: ”healthy,” ”intermediate,” and ”sick.”

Bavafa et al. (2021) analyzed primary care delivery through e-visits where patients become sick

after an office visit, necessitating another visit after a random period—a model with an increasing

failure rate, linking longer intervals between visits to a higher sickness likelihood. More recently,

Bavafa et al. (2022) introduced a model capturing patients’ evolving health condition to study

optimal discharge health, impacting readmission probability.

We also use a single aggregated health score to describe patients’ health condition. Our model

uses Brownian motion dynamics as the underlying mechanism to capture the dynamic evolution

of health condition at each location. Being a BM model, it is fully characterized by its mean

recovery speed (the drift) and variability (the diffusion coefficient), which can lead to deterioration.

Modeling via drifted BMs has been used in sequential decision making and in the modeling of
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healthcare decisions (Siegmund 2013, Wang et al. 2010). We use the BM health score progression

model to answer macro-level design questions, around which further refinement, such as dynamic

control for individual patients, can be done.

3. Modeling Hybrid Hospitalization and Patient Health Progression

Our modeling perspective in this work will operate on both micro- and macro-levels, capturing

both the dynamics of each individual patient’s health progression and the operational structure of

the hybrid hospitalization network. Let us begin by describing the latter.

3.1. Two-Station Network of Remote and On-Site Hospitalization

Because the decision of whether to hospitalize a patient on-site or remotely must be made as

soon as the patient is assessed, our hybrid hospital model begins after a triage through a virtual

Emergency Department (ED). The full hospital network is depicted in Figure 1. After assessment

at the virtual ED, patients can either be admitted remotely or advised to travel to the hospital

for on-site admission. If admitted remotely, they either fully recover and are discharged, or, if

their health condition worsens and reaches some predetermined threshold, they are called in to the

hospital and complete their hospitalization on-site.

Figure 1 Illustration of the hybrid hospital service network stations.
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We use the terms “health condition” or “health score” as measures of clinical acuity. The higher

the score, the worse the health condition is. Patients arrive to the virtual ED stochastically accord-

ing to a Renewal process with rate λ and an initial health score x ∈R+. Upon arrival, a decision

must be made as to whether to admit them remotely or on-site (following travel). If admitted
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on-site, they remain there until full recovery. If admitted remotely, they stay there as long as their

health score does not reach a call-in threshold x + a, a ≥ 0. If a patient’s health score reaches

0 before it reaches x + a, they are discharged. Otherwise, when their score reaches x + a, they

travel to the hospital, where they are admitted and stay there until they are healthy. We denote

the travel time to the hospital by T . Note that if a = 0, the patient is automatically admitted

on-site, and if a > 0, they are automatically first admitted remotely. Hence, the call-in threshold

a parsimoniously captures the health network’s primary design decision: when should (or can) a

patient be hospitalized remotely?

3.2. Stochastic Dynamics of the Individual Health Score

Wemodel the evolution of patients health conditions through negative-drift BMs, which capture the

recovery rates towards improvement during hospitalization as well as the randomness in recovery.

Specifically, the health score of a patient during remote hospitalization is given by the process

BR(t) = x+σRB
R(t)− θRt,

where BR(t) is a standard BM, θR > 0 and σR > 0. Thus, BR(t) is a negative-drift BM, starting at

the initial score x, with drift −θR and diffusion coefficient σR.

While the improvement rate at home being positive implies that home-hospitalized patients

tend toward recovery and discharge, randomness allows the health score to increase, meaning that

the patient’s condition can become more severe. If a remotely hospitalized patient’s condition

deteriorates too much, they are called in to the hospital and complete the treatment there. Let

a+x, a> 0 denote the call-in threshold for a patient whose initial health score at admission was x.

The remote hospitalization LOS is the first time a patient starting from health condition x reaches

health condition 0 (healthy) or health condition x+ a (called in) and is given by

τR(x,a) = inf{t≥ 0 :BR(t) = 0 or BR(t) = a+x}.

The call-in likelihood, P (BR(τR(x,a)) = a+x), is the probability that a patient who starts at

health condition x will reach health condition a+x before reaching 0. The expected LOS of remote
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hospitalization is E [τR(x,a)]. Both have well known explicit expressions from the solution to the

“Gambler’s ruin” problem involving a BM. We have

px(a) := P
(
BR(τR(x,a)) = a+x

)
=

1− e−ρx

eρa − e−ρx
,

where we defined ρ := 2θR/σ
2
R > 0, and

E [τR(x,a)] =
1

θR
((1− px(a))x− px(a)a) .

Patients who are called in have to travel to the hospital, and, naturally, their health condition

may further degrade while traveling. We assume that their health score deteriorates according to

a random variable, Z(x,a,T ) on [0,∞), whose expected value is TθT for θT > 0. Therefore, the

patient’s health score at arrival to the hospital is x+ a+Z(x,a,T ).

The model dynamics at the hospital are similar to the remote case, but with the difference of the

initial starting health score being random, dependent on the patient’s condition after the transit.

The patient’s health score’s evolution is determined by

BH(t) = x+ a+Z(x,a,T )+σRB
H(t)− θHt,

where BH(t) is a standard BM, θH > 0 and σH > 0. We assume that the arrival process,

BR,Z and BH are independent. Define

τH(x,a,Z) = inf{t≥ 0 :BH(t) = 0},

to be the patient’s LOS at the hospital. Given Z =Z(x,a,T ), τH(x,a,Z) is the time it takes a BM

with a negative drift −θH , starting at a+ x+Z to hit zero. The expected LOS at the hospital is

therefore

E [τH(x,a,Z)] =E [E [τH(x,a,Z) | Z]] =
1

θH
E [(x+ a+Z(a,x,T ))] =

1

θH
(x+ a+TθT ) .

Finally, we complete the model by encoding a required clinical constraint, which enforces that

the hospital never allows the patient to become too ill while being treated remotely. Let S̄ be the
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Figure 2 Three illustrative examples of patient’s health score evolution.
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most severe health condition allowed outside the hospital (in expectation). The call-in threshold

then must satisfy that x+ a+ TθT ≤ S̄. Letting Ā =
(
0∨ (S̄−x−TθT )

)
, this policy constraint

implies a∈ [0, Ā] =A. Note that when S̄ < x+TθT , the call-in threshold must be zero.

Figure 2 depicts three sample-path scenarios, all of which commence with a patient’s health score

at x and involve a transfer time of T . In Scenario 1, the patient is admitted remotely, improves and

is discharged once their health score reaches zero. In Scenario 2, the patient is initially admitted

remotely but experiences a decline in health. When the patient’s health score reaches the predefined

call-in threshold of x+ a, they are called in to the hospital. During the journey to the hospital,

the patient’s health continues to deteriorate. Upon admission to the hospital, their health score is

x+ a+ Z(x,a,T ), and from that point onward, the patient’s condition improves. In Scenario 3,

the patient is called in to the hospital immediately upon arrival (i.e., a= 0). Upon admission and

travel to the hospital, the patient’s health score is x+Z(x,a,T ), and from that point onward, the

patient recovers on-site.
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3.3. Cost Structure and Optimization

As mentioned, the health network’s first-order design decision is captured in the threshold x+ a.

We expound upon that notion in this section. Because the negative drifts inherently capture health

conditions that eventually improve, the primary metric by which these decisions are assessed will be

the cost of care. Let hR and hH denote the holding cost rate for remote and on-site hospitalization,

respectively. Similarly, hT denotes the traveling cost rate. Accordingly, the total long run average

cost is:

V (a) = λ
(
hRE [τR(x,a)]+

(
hTT +hHE [τH(x,a,Z)]

)
px(a)

)
= λ

(
hR

θR
((1− px(a))x− px(a)a)+ px(a)

(
hTT +

hH

θH
(a+x+ θTT )

))
, (1)

where our goal is to set the optimal call-in threshold a∈A that minimizes this cost. We find that

it is useful to rewrite the value function (1) as

V (a) = λ (α+βpx(a)+ γpx(a)a) , (2)

where the constants α,β and γ are defined as follows:

α= hRx/θR,

β =−hRx/θR +hTT +hH (x+ θTT )/θH ,

γ =−hR/θR +hH/θH .

Notice that β = γx+hTT +hHθTT/θH = γx+(hT +hHθT/θH)T .

In addition to the shorter expression, each of α, β, and γ offer interpretation to the decision

problem. First, γ represents the disparity in marginal costs between on-site and home hospitaliza-

tion. Then, β is the difference in expected costs of immediate transfer to on-site (a= 0) and never

transferring (a=∞). Hence, β measures the viability of immediate transfer versus exclusively doing

remote hospitalization. Lastly, α is the expected cost of never transferring, or simply the expected

cost per patient of exclusively doing home hospitalization: V (0)/λ= α+β and V (∞)/λ= α.
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Resource constraints. The hospital has to allocate its resources, primarily medical staff,

between two groups: the on-site group which treats the on-site patients, and the virtual group,

which is responsible for the remotely hospitalized patients. We start by defining the offered work-

load of each group. The on-site workload is

WH(a) :=
λpx(a)

θH
(a+x+TθT ) ,

while the remote workload is

WR(a) :=
λ

θR
((1− px(a))x− px(a)a) .

The total workload is therefore,

WT (a) :=WH(a)+WR(a).

Consider a total amount of resources, C, that needs to be allocated between the two groups. The

corresponding optimization problem is

min
a∈A

V (a) =min
a∈A

λ (α+βpx(a)+ γpx(a)a)

s.t. WT (a)≤C.

(3)

We denote the optimal call-in threshold by a∗
C , to emphasize the dependency of the solution on the

total amount of resources. The solution (if it exists) to (3) minimizes the cost V (a), while balancing

the on-site and remote workloads, WH and WR, so that their sum does not exceed C. In particular,

the dependence of WH and WR on a dictates which thresholds allow the constraint in (3) to be met

and, therefore, encompasses the impact of resource scarcity. We elaborate on this in the Section

4.1. In addition, the existence of a solution to (3) depends on the problem parameters, and, in

particular, the values of λ and C. Indeed, if λ is large and C is small, the total workload constraint

in (3) might not be satisfied for any threshold a ∈A. Section 4.2 is devoted to characterizing the

feasibility region in terms of (λ,C) pairs.
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4. Preliminary Analyses: Workload and Feasibility

To identify the optimal call-in threshold and the resulting division of work among on-site and

home hospitalization, we must first understand how the full operation depends on this level. In

this pursuit, this section contains an analysis of the system’s workload and a characterization of

the problem’s feasible region.

4.1. Analyzing the Shape of the Total Workload

We begin by separately characterizing the respective dependence of the on-site and remote hospi-

talization workloads on a.

Lemma 1. WH(a) is a strictly decreasing function; WR(a) is a strictly increasing function of a.

The intuition of Lemma 1 is as follows: with an increase in the value of a, patients, on average,

spend more time at home than in the hospital, by design. This translates into a rise in WR(a) and

a decline in WH(a). The remaining question, tackled in Proposition 1, pertains to the behavior of

the sum WT (a) =WH(a) +WR(a) as a function of a. The pivotal factor influencing this behavior

is the ratio of relative recovery rates: θH/θR. Additionally, let ∆> 0 be defined as

∆=
ρθTT

ρx− 1+ e−ρx
. (4)

Through these two quantities, we can classify the shape of the workload as a function of the call-in

threshold.

Proposition 1. The total workload WT (a) satisfies the following:

1. Case 1: If θH/θR ≤ 1, then WT (a) is strictly decreasing.

2. Case 2: If 1< θH/θR < 1 +∆, then WT (a) has a unique minimum a0 in (0,∞). Moreover,

WT (a) is strictly decreasing in [0, a0) and strictly increasing in (a0,∞).

3. Case 3: If θH/θR ≥ 1+∆, then WT (a) is strictly increasing.

From Proposition 1, we see that the total workload WT (a) can have three forms. If the average

recovery rate at the hospital is slower than at remote hospitalization (Case 1), minimizing the total

workload can be achieved by increasing the call-in threshold to its maximum value. On the other
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hand, if the recovery rate at the hospital is much faster than under remote hospitalization (Case

3), minimizing the total workload is achieved by setting the call-in threshold to zero. Lastly, in the

intermediate range when the on-site recovery rate is only moderately faster than under at home

(Case 2), the total workload is unimodal with a unique minimum. Figure 3 illustrates these three

cases.

Figure 3 An illustration of the total workload WT (a).
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Considering the problem context, Cases 2 and 3 each seem more realistic than Case 1, and Case 2

is likely the most interesting of all. First, it less likely that the average recovery rate at home would

outpace that under the full capabilities available at a hospital. Then, under the same reasoning, it

is of the greatest managerial intrigue to consider the setting when the hospital is indeed better on

average, but only marginally so.

The insights derived from Proposition 1 will prove valuable in the upcoming section where we

analyze the feasibility region. Furthermore, in Section 5.2, these insights will be instrumental as

we analyze the capacitated solution.

4.2. Identifying the Feasibility Region

Building on this understanding of the workload, let us now characterize, based on the given prob-

lem parameters, the (λ,C) pairs for which there exists an a ∈ A satisfying the constraint in the

optimization problem (3). The feasibility region of (3) is defined as:

CFR = {(λ,C)∈R2
+ : ∃a∈A, s.t. WT (a)≤C}.
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Let amin denote the value of a∈A for which the total workload is minimal, i.e.,

amin = argmin
a∈A

WT (a).

Note that Proposition 1 guarantees that amin is unique. However, relative to the a0 in Proposition 1,

amin is restricted to the range A= [0, Ā], whereas a0 ∈R+.

Clearly, ∃a∈A s.t. WT (a)≤C ⇐⇒ WT (amin)≤C. Since WT (amin)/λ does not depend on λ, and

amin minimizes it as well, we are essentially looking for (λ,C) pairs such that λ (WT (amin)/λ)≤C.

Using this and Proposition 1, we obtain the following characterization of the feasibility region.

Proposition 2. The feasibility region of the optimization problem (3) is given by:

CFR = {(λ,C)∈R2
+ :WT (amin)≤C},

where:

1. Case 1: If θH/θR ≤ 1, then amin = Ā.

2. Case 2: If 1< θH/θR < 1+∆, then amin =min{a0, Ā}> 0, where a0 is the unique minimum

of WT (a) for a∈R+ (which does not depend on λ), as in Proposition 1.

3. Case 3: If θH/θR ≥ 1+∆, then amin = 0.

Proposition 2 characterizes the feasibility region by considering three cases, mirroring the distinc-

tions established in Proposition 1 regarding the behavior of the total workload – namely, whether

it increases, decreases, or exhibits a unimodal pattern. With this understanding of the structure

of the arrival rates and capacities for which the resource allocation problem is feasible, let us now

analyze the true optimization problem.

5. Minimizing the Cost-of-Care for Hybrid Hospitalization

With the preliminary analyses in hand, we are now prepared to address our focal question of

managing the operations of a hybrid hospital. To build insights, we will first study the unconstrained

problem, where the resource capacity C =∞, and we will then utilize this solution to analyze the

finite C case.
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5.1. Identifying the Optimal Call-In Structure with Unlimited Resources

Recalling the simplified notation in Equation (2), our goal is to set the call-in threshold in order

to minimize the total expected cost rate:

min
a∈A

V (a) =min
a∈A

λ [α+βpx(a)+ γpx(a)a] .

Proposition 3 characterizes the uncapacitated optimal call-in threshold a∗
∞. In particular, the

extreme cases are a∗
∞ = 0 and a∗

∞ = Ā= S̄−TθT − x. When a∗
∞ = 0, remote hospitalization is less

cost effective than on-site hospitalization, and thus it is preferable to hospitalize the patient on

site. When a∗
∞ = S̄−TθT −x, however, remote hospitalization is more cost effective, and thus it is

preferable to remotely hospitalize the patient until they reach the worst health condition that can

still be treated remotely.

Proposition 3 (optimal call-in threshold). Let the travel time T and initial condition x> 0

be fixed.

• If the marginal hospitalization cost is higher at the hospital (γ ≥ 0), then remote hospitalization

is always preferable, and the call in threshold is as high as allowable (a∗
∞ = Ā).

• If the marginal hospitalization cost is smaller at the hospital (γ < 0):

— If immediate transfer to on-site is either not viable (β ≥ 0) or viable but not dominant

(γ(1− e−ρx)/ρ < β < 0), then the optimal threshold is given by a∗
∞ = (ã ∧ Ā), where ã > 0 is the

unique solution to

e−ρã = (1−βρ/γ− ρã)eρx. (5)

which can be expressed by

ã=
1

ρ

(
1+W

(
−e−ρx+βρ/γ−1

))
− β

γ
, (6)

with W (·) as the Lambert-W function (principal branch).

— If immediate transfer is both viable and dominant (β ≤ γ(1 − e−ρx)/ρ), then a∗
∞ = 0; all

patients are treated on-site and home hospitalization is not offered.
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We find that γ plays an important role in the decision of where to hospitalize patients and in

case they were admitted, decide when to call them in to the hospital. Specifically, γ represents the

marginal cost difference between on-site and remote hospitalization. If γ is positive, then patients

should be admitted to remote hospitalization and stay there as much as possible.

Figure 4 illustrates the optimal call-in threshold and probability for different transfer times to the

hospital and different initial conditions. First, we observe that remote hospitalization is not cost-

effective for patients in close proximity or those residing at a significant distance from the hospital.

In such cases, where a∞ = 0, direct on-site admission is deemed more appropriate. Moreover, the

call-in threshold is not monotone in T : it initially rises, reaching a maximum traveling time, T̂ , that

remains consistent across all initial severity levels, before subsequently declining back to zero. The

call-in probability has the exact opposite structure: it starts at one, decreases and then increase

back. Second, we can see that as the initial condition becomes more severe (x increases), beyond

the fact that the call-in threshold decreases, the distance range at which remote hospitalization is

cost effective shrinks. Theorem 1 establishes these properties.

Figure 4 Optimal call-in threshold and call-in probability as a function of travel time for different initial health

scores. The parameters for [H,R,T ] are θ= [0.5,0.2,0.1], c= [2.65,1.4,2], γ =−1.7, λ= σR = 1, S̄ = 10.
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Specifically, to formalize the decision’s dependence on distance, let us first clarify how the model

parameters depend on T . Recalling the definitions of α, β, and γ for Equation (2), we can rec-
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ognize that, among these, only β depends on T . Moreover, if we define η = hT + hHθT/θH as the

marginal cost of travel distance, then β can be simply re-expressed as β = γx+ηT . Exploiting this

dependence, we formalize the observations from Figure 4 now in Theorem 1.

Theorem 1. Let TLB and TUB be defined such that

TLB =−γ

η

(
x− 1

ρ

(
1− e−ρx

))
and TUB =

S̄−x

θT
. (7)

Then, if γ ≥ 0, a∗
∞ > 0 if and only if T < TUB.

Moreover, if γ < 0, then the T̂ which is the unique solution to

S̄ =
1

ρ

(
1+W

(
−eηρT̂/γ−1

)
+

(
θT − η

γ

)
T̂

)
, (8)

is such that for T ∈ (TLB, T̂ ),

∂a∗
∞

∂T
=−η

γ

1−W
(
−eρηT/γ−1

)
1+W (−eρηT/γ−1)

> 0, (9)

and for T ∈ (T̂ , TUB),

∂a∗
∞

∂T
=−θT < 0, (10)

with a∗
∞ = 0 for T ̸∈ (TLB, TUB).

Theorem 1 reveals that, even when remote hospitalization has lower marginal cost, the cost

benefit only applies to patients up to a certain distance from the hospital. While this may seem

somewhat paradoxical at first glance, its intuition is clear: the maximum allowable patient severity

(S̄) and the distance-dependent expected deterioration while in transit (θTT > 0) together imply

that there is a “shorter leash” to risk on home hospitalization for patients who live far from

the facility. This observation is further complicated by the recognition that the range of cases

in which home hospitalization is viable narrows as the initial severity increases: TLB increases in

x, TUB decreases, and the rates that a∗
∞ changes with T are exactly parallel across x and thus

are unaffected. Recalling the growing recognition of more dire health states in rural areas (Lewis
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2022), we see that Theorem 1 identifies a problematic combination. That is, if greater distance and

worsened initial condition each restrict the feasibility of remote hospitalization, then this mode of

care may not benefit the exact populations for which it seems intended.

Let us emphasize that this conundrum is not a consequence of scarce resources – thus far, our

results have assumed an unlimited amount of resources. Furthermore, as we show in the next

section, the capacitated solution retains the same properties to the uncapacitated counterpart.

Consequently, the diminished effectiveness of remote hospitalization with distance and severity

persists also in the presence of resource scarcity; in fact, in what may be the most realistic parameter

settings, this reduction is exacerbated even further.

5.2. Identifying the Optimal Call-In Structure with Limited Resources

We now go back to our original capacitated problem in (3). The goal is two-fold. First, we wish set

the call-in policy under finite amount of resources. Second, we wish to allocate the total amount

of resources between the two hospitalization modes: on-site and remote.

To begin, Theorem 2 characterizes the solution of the capacitated problem (3).

Theorem 2. Assume that WT (amin)≤C (i.e. the feasibility region is not empty). Then, problem

(3) has a unique solution a∗
C ∈A, such that:

• If WT (amin) =C, then a∗
C = amin.

• If WT (amin)<C, then:

— If WT (a
∗
∞)≤C, then a∗

C = a∗
∞,

— If WT (a
∗
∞)>C, then amin ̸= a∗

∞ and a∗
C is the unique value of a ∈ A strictly between amin

and a∗
∞ such that WT (a) =C.

Note that depending on the parameters, both amin > a∗
∞ and amin < a∗

∞ are possible. In either

case, when WT (a
∗
∞)>C, and WT (amin)<C, the call-in threshold a∗

C is strictly between them and

satisfies (uniquely) WT (a
∗
C) =C.
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To interpret this structure and make its solution explicit, let us now establish an equivalence

between the capacitated and uncapacitated solutions. To emphasize the dependence of the function

V on holding costs, we denote it as V (hR, hH , a). Recall the uncapacitated minimization problem:

min
a∈A

V (hR, hH , a), (11)

which per Proposition 3, has a unique solution a∗
∞ ∈A. Recall also the capacitated minimization

problem:

min
a∈A

V (hR, hH , a)

s.t. WT (a)≤C,

(12)

which per Theorem 2, assuming that WT (amin)≤C, has a unique solution a∗
C ∈A.

Define

Γ=


−V ′(hR,hH ,a∗C)

W ′
T
(a∗

C
)

, if WT (amin)<C and WT (a
∗
∞)>C

0, otherwise.

Note that Γ ≥ 0, since in the case where WT (amin) < C and WT (a
∗
∞) > C, V ′(hR, hH , a

∗
C) and

W ′
T (a

∗
C) must be non zero and with opposite signs (see the proofs of Lemmas 1 and 2). Now,

consider a similar uncapacitated optimization problem with Γ-modified costs:

min
a∈A

V (hR +Γ, hH +Γ, a). (13)

Proposition 4 establishes the equivalence between the solutions of (12) and (13). This equivalence

implies that all properties of the uncapacitated problem apply to the capacitated problem. Notably,

the solution structure, characterized by (modified) α,β, and γ as outlined in Proposition 3, and

the influence of traveling distance on the optimal call-in policy, as indicated in Theorem 1, remain

consistent.

Proposition 4. Assume that WT (amin) < C (i.e. the feasibility region of (12) contains more

than one point). Then, the problem (13) has a unique solution in A which equals a∗
C.
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The parameter Γ captures the effect of scarce resources. In essence, the capacity constraint effect

is reflected through the simultaneous increase of both remote and on-site costs by Γ. Consequently,

the call-in threshold will experience an increase or decrease contingent upon the initial cost rates

and recovery rates associated with each hospitalization option. Specifically, the revised parameter

γ(Γ) would be

γ(Γ) =
−(hR +Γ)

θR
+

hH +Γ

θH
= γ+Γ

(
1

θH
− 1

θR

)
.

Since Γ≥ 0, the value of γ(Γ) may increase/decrease depending on the relation between θH and

θR. Per Proposition 3, the value of γ(Γ), and in particular its sign, determines the optimal call-in

threshold and whether, if at all, patients should be sent to remote hospitalization. If, for example,

θH > θR, then γ(Γ) < γ. When γ > 0 and γ(Γ) < 0, patients who under ample resources would

remain in remote hospitalization until their health score reaches S̄, would be called in at a lower

threshold under a finite number of resources, or even directly admitted on-site. Furthermore, recall-

ing Theorem 1, we can notice that if θH > θR and γ < 0, then the fact that γ(Γ)< 0 implies that

an even smaller range of distances will be suitable for remote hospitalization, and this range again

shrinks with the initial severity x. On the other hand, if θH < θR, then γ(Γ)> γ. When γ < 0 and

γ(Γ)> 0, patients who under ample resources would be admitted on-site, or be admitted remotely

with a call-in threshold that is smaller than S̄, would under a finite number of resources, be called

in at S̄.

Figures 5 and 6 illustrate the optimal capacitated solution for different resource levels and travel

times. Figure 5 corresponds to Case 3 in Proposition 1; in the top plots (T = 2): 2.5 = θH/θR >

∆+ 1 = 2.14: When there is ample resources (C ≥ 4), a∗
∞ ≈ 4. As resources becomes scarce, the

workload WT (a) decreases to satisfy the capacity constraint. Since in this case WT (a) is strictly

increasing, the call-in threshold a∗
C decreases up until C ≈ 2.5 – the boundary of the feasibility

region. The bottom plots are for T = 8. The feasibility region, which is smaller since T is larger,

ends at C ≈ 3.3. In other words, more resources are needed when patients are distant.

The right plots show the optimal resource allocation WH and WR. We see that when resources

are scarce, most of them (80% when T = 2) are allocated to the hospital; as the total amount
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increases, fewer resources are allocated to the hospital, while more are allocated to remote hos-

pitalization. When there are ample resources, most of them (82% when T = 2) are allocated to

remote hospitalization.

Figure 5 Optimal capacitated solution. The parameters for (H,R,T ) are θ= (0.5,0.2,0.1), h= (2.65,1.4,2), x= 1,

S̄ = 15, λ= 1, σR = 1.
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Figure 6 corresponds to Case 1 in Proposition 1, where 0.83 = θH/θR < 1. In this case, WT (a)

is strictly increasing. Therefore, when there is ample amount of resources, a∗
∞ ≈ 2; as resources

become scarce, a∗
C increases. The right plot shows that, as opposed to the cases in Figure 5, as the
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total amount of resources increase, fewer are allocated to remote hospitalization, while more are

allocated to the hospital.

Figure 6 Optimal capacitated solution. The parameters for (H,R,T ) are θ = (0.05,0.06,0.1), h = (2.65,5.1,2),

x= 1, S̄ = 10, λ= 1, σR = 1.
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6. Conclusions and Direction for Future Research

The hybrid hospital model constitutes a service network design problem. The decision of whether

to admit a patient remotely or on-site entails the efficient allocation of resources across the two

hospitalization modes. To address this, we adopt a modeling approach that captures the dynamic

progression of individual health conditions within the network and during travel. System design

optimization, in this context, revolves around establishing the call-in threshold that minimizes the

total operational costs, consequently influencing the optimal resource allocation.

Managerially, our results both offer guidance on how hospitals should allocate resources between

on-site and remote care, and identify a potential cautionary tale, in that distant patients may not

actually be best served by remote hospitalization. Qualitatively, these insights may also be relevant

in other parts of public life, e.g., if online education is considered as an alternative for a rural school

with declining enrollment. Much like in the case of remote hospitalization, these challenges may



26

be further heightened by inequities of internet access for those who live in rural areas (Lai and

Widmar 2021). Much like we have discussed for the pitfalls of relying on remote hospitalization

to serve rural communities, we believe our results also offer a word of caution towards potential

over-reliance on online education, in which recent data from the pandemic has revealed stark and

concerning disparities in rates of learning relative to just before Covid-19 began (Halloran et al.

2021, Goldhaber et al. 2022).

Whether in the focal hospitalization application or in other relevant areas, one possible limitation

of our model is the underlying assumption that all patients eventually recover. Indeed, the negative

drifts of the Brownian motions naturally imply that every patient’s severity will hit 0 in finite time

almost surely. This presents a natural opportunity to generalize and model mortality or another

form of negative outcome. While the assumption of guaranteed recovery may be conservative, we

believe that this actually emphasizes both the importance of careful hybrid hospital design and

the fragility of the relationship between the remote format and patience distance. That is, viewing

our results with the eventual recovery assumption in mind, we see that even when the worst that

can happen is added cost, remote hospitalization is still only viable for a limited range of patient

distances (which may be further limited by the initial health severities), even when the operations

are designed optimally as we describe.

There are several additional future research directions. The baseline model can be expanded

to include additional features such as starting the hospitalization on-site and possibly completing

it remotely. The model can be expanded to capture more elaborate process protocols/networks.

Specifically, in our model, once patients are called in to the hospital, they stay there until full

recovery. In some cases, however, once patients are stabilized at the hospital, they may be sent

home to complete their hospitalization remotely. Furthermore, our solution serves as a foundational

framework for the development of dynamic control policies. The call-in threshold establishes a ref-

erence point that can be further refined through real-time performance enhancements. Ultimately,

the optimal control strategy would introduce state-dependent call-in decisions, which adapt based

on perturbations from the initial optimal baseline decisions.
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Appendix A: Proofs

Proof of Lemma 1. Recall that px(a) is the hitting probability given by

px(a) := P
(
BR(τR(x,a)) = a+x

)
=

1− e−ρx

eρa − e−ρx
,

and therefore, its first derivative with respect to a is

p′
x(a) =− ρeρa

eρa − e−ρx
px(a)< 0.

Our goal is to prove that W ′
H(a)< 0 and W ′

R(a)> 0. We begin with WH . Recall that:

WH(a) =
λpx(a)

θH
(a+x+TθT ) .

Therefore and since p′
x(a) ̸= 0,

W ′
H(a) =

λ

θH
(p′

x(a)(a+x+ θTT )+ px(a)) =
λ

θH
p′
x(a)

(
a+x+ θTT +

px(a)

p′
x(a)

)
. (14)

Now,

px(a)

p′
x(a)

=−eρa − e−ρx

ρeρa
=−1

ρ
(1− e−ρ(a+x))>−(a+x), (15)

where the inequality is because 1− e−x <x for x> 0. Therefore,

a+x+ θTT +
px(a)

p′
x(a)

> θTT ⇒ a+x+
px(a)

p′
x(a)

> 0. (16)

Multiplying both sides by λ
θH

p′
x(a), the result follows since p′

x(a)< 0. We turn to WR(a). We have:

WR(a) =
λ

θR
((1− px(a))x− px(a)a) =

λ

θR
x− λ

θR
px(a)(a+x),

and therefore (and again, because p′
x(a) ̸= 0),

W ′
R(a) =− λ

θR
(p′

x(a)(a+x)+ px(a)) =− λ

θR
p′
x(a)

(
a+x+

px(a)

p′
x(a)

)
> 0, (17)

where the inequality is from (16) and since p′
x(a)< 0. Q.E.D.
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Proof of Proposition 1. Recall that WT (a) =WH(a) +WR(a) and that we wish to characterize the

dependence of WT on a. For ease of notation, denote r= θH/θR. We have:

W ′
T (a) =W ′

H(a)+W ′
R(a)

(14),(17)
=

λ

θH
p′
x(a)

(
a+x+ θTT +

px(a)

p′
x(a)

)
− λ

θR
p′
x(a)

(
a+x+

px(a)

p′
x(a)

)
(4)
=

λp′
x(a)

θH

(
(1− r)

(
a+x+

px(a)

p′
x(a)

)
+ θTT

)
(15)
=

λ|p′
x(a)|
ρθH

(
(1− r)(1− ρ(a+x)− e−ρ(a+x))− θTTρ

)
,

where the last inequality is because p′
x(a)< 0.

We start with Case 1, where θH/θR ≤ 1 ⇐⇒ 1− r ≥ 0. Using the inequality 1− e−x ≤ x, we get that

1− ρ(a+x)− e−ρ(a+x) ≤ 0. Thus, if 1− r≥ 0, then W ′
T (a)< 0.

We turn to Case 3. Note that when r > 1, 1− r=−|1− r|. In this case,

W ′
T (a)

if r>1
=

λ|p′
x(a)||1− r|

ρ

(
−1+ ρ(a+x)+ e−ρ(a+x) − θTTρ

|1− r|

)
.

Denoting h(a) :=−1+ ρ(a+x)+ e−ρ(a+x), we have:

h(0) = ρx− 1+ e−ρx>0 because e−x > 1−x for x> 0,

h′(a) = ρ− ρe−ρ(a+x) = ρ(1− e−ρ(a+x))> 0,

h(a)
a→∞−−−→∞. (18)

Thus, W ′
T (a) can be negative, if and only if its value at a= 0 is negative. Clearly, this does not happen if

h(0)≥ θT Tρ

|1−r| , or, written differently, if

|1− r| ≥ θTTρ (ρx− 1+ e−ρx)
−1 if r>1⇐⇒ r≥ 1+∆,

where ∆ is defined in (4).

Lastly, we turn to Case 2 where 1 < r < 1 +∆. This implies that h(0) < θT Tρ

|1−r| . In this case, by (18), it

is clear that W ′
T (0)< 0, and that there exists a0 > 0 such that W ′

T (a)< 0 for a ∈ [0, a0), W
′
T (a0) = 0, and

W ′
T (a)> 0 for a∈ (a0,∞). This concludes the proof. Q.E.D.

Proof of Proposition 2. Per section 4.2, the feasibility region of the optimization problem (3) is

CFR = {(λ,C)∈R2
+ :WT (amin)≤C}.

All that is left is to characterize amin. By Proposition 1, if θH/θR ≤ 1, then WT (a) is strictly increasing in

a. Thus, in this case, amin = 0 which proves the first item. Again by Proposition 1, if θH/θR ≥ 1+∆, then

WT (a) is strictly decreasing in a. Thus, in this case, amin = S̄−x−TθT , which proves the second item.
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Finally, in the case where 1< θH/θR < 1+∆, by Proposition 1, there exists a0 > 0 such that W ′
T (a)< 0

for a ∈ [0, a0), W
′
T (a0) = 0, and W ′

T (a)> 0 for a ∈ (a0,∞). If a0 < S̄ − x− TθT , then amin = a0. Otherwise,

S̄ − x− TθT ∈ (0, a0], and since WT (a) is strictly decreasing in this interval, we have amin = S̄ − x− TθT

which completes the proof of the third item and the proposition. Q.E.D.

Proof of Proposition 3. We first provide technical characterizations of the objective function V (a).

Lemma 2. The value function V (a) satisfies the following:

If γ ≥ 0, then V (a) is strictly decreasing in a∈R+; else (γ < 0),

• If β ≥ 0, or γ(1− e−ρx)/ρ < β < 0, then V (a) is unimodal with a unique minimum over a∈R+.

• If β ≤ γ(1− e−ρx)/ρ, then V (a) is strictly increasing in a∈R+.

From Lemma 2, γ ≥ 0 yields that V (a) is strictly decreasing, and thus the largest allowable threshold

is optimal: a∗ = Ā. Then, if γ < 0 and β ≥ γ(1− e−ρx)/ρ, then Lemma 2 provides that there is a unique

optimal solution. Moreover, because the definition of ã in Equation (5) is precisely the first order condition

in Equation (21) within the proof of Lemma 2, we can see that ã is the unique maximizer of V (a). If ã is

within the maximum allowable threshold size, then it is optimal for the unlimited capacity problem, but if

ã > Ā, then we can see that V ′(a) > 0 for all a ∈ [0, Ā], meaning Ā is optimal. Hence, a∗ = (ã ∧ Ā) is the

optimal threshold. Finally, for the remaining case and again by Lemma 2, if β ≤ γ(1− e−ρx)/ρ, then V (a) is

always increasing, and thus the optimal threshold is as low as possible, directing all patients immediately to

on-site hospitalization: a∗ = 0.

To complete the proof, let us verify that ã given by the solution in Equation (6) is indeed positive and

obtained by the principal branch of the Lambert-W function. Note that the existence of a unique, positive

solution to first order condition in Equation (21) is already guaranteed for γ < 0 and β > γ(1 − e−ρx)/ρ

through the preceding linear-and-exponential-function arguments; the focus now is simply on proving the

correctness of Equation (6). Rearranging (21) and multiplying both sides by eβρ/γ−1, we have that ã will be

the a that solves

−e−ρx+βρ/γ−1 = (ρa+βρ/γ− 1)eρa+βρ/γ−1.

Before further manipulating this equation, let us inspect the terms in the exponent on the left-hand side.

If β ≥ 0, it is clear that −ρx+ βρ/γ − 1 < 0, so let us focus on γ(1− e−ρx)/ρ < β < 0. Dividing by γ/ρ <
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0, we have that 0 < βρ/γ < 1 − e−ρx, and, furthermore, by adding −1 − ρx to each side, we have that

−ρx+βρ/γ− 1<−ρx− e−ρx < 0. Hence, for all β > γ(1− e−ρx)/ρ, −e−ρx+βρ/γ−1 ∈ (−1/e,0).

For the identity W (zez) = z to hold on the principal branch of the Lambert-W, we must have z ≥ −1.

Hence, as a final step, let us show that ρã+ βρ/γ − 1≥−1. If β ≤ 0, this is immediately true by the fact

that ρ> 0, ã > 0, and γ < 0, so let us focus on the β > 0 case. If ã >−β/γ, then we can apply the Lambert-

W principal branch identity, and Equation (6) will follow immediately. To see that this is indeed true, we

return to the linear-and-exponential-function arguments. Notice that, at a=−β/γ > 0, the left-hand side of

Equation (21) is eρβ/γ < 1, whereas the right-hand side simplifies to eρx > 1. Therefore, the linear function

has not yet crossed the exponential function, implying ã >−β/γ. Q.E.D.

Proof of Lemma 2. To begin, let us obtain a first order condition for V (a). The derivative of the cost

function with respect to a is

V ′(a) = βp′
x(a)+ γap′

x(a)+ γpx(a).

Since p′
x(a)< 0, the cost derivative simplifies to

V ′(a) = p′
x(a)

(
β+ γa+ γ

px(a)

p′
x(a)

)
(15)
= p′

x(a)(β+ γa− γ
1

ρ
(1− e−ρ(a+x)))

=
|p′

x(a)|
ρ

(
γ(1− e−ρ(x+a))−βρ− γρa

)
. (19)

Since ρ > 0, and given that x> 0, |p′
x(a)| is strictly positive for all a≥ 0, the sign of dV/da= 0 matches the

sign of γ(1− e−ρ(x+a))−βρ− γρa. We can see that the a-derivative of this expression is

(
γ(1− e−ρ(x+a))− ρβ− γρa

)′
=−γρ

(
1− e−ρ(x+a)

)
, (20)

and thus we can recognize that whether or not V ′(a) will be 0 for some a ∈R+ purely depends on the sign

of γ and the initial sign of V ′(a) at a= 0. Note that this does not necessarily imply convexity or concavity:

V ′′(a) need not match γ in sign. Hence, V ′(a) may fluctuate between increases and decreases across values

of a∈R+, but it will cross 0 at most once on this range.

This leads us to consider when V ′(a) = 0. Rearranging γ(1− e−ρ(x+a))− ρβ − γρa, we find the following

first order condition: a is a candidate optimal threshold solution, if and only if

e−ρa = (1− ρβ/γ− ρa)eρx. (21)

Now, let us notice that, as functions of a, the left-hand side of Equation (21) is a decaying exponential

(exponential with negative rate−ρ< 0) and right-hand side is simply a linear function with slope−ρeρx <−ρ.
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Hence, the right-hand side function will intersect the left-hand side function at most once on a ∈ R+. To

evaluate where this occurs, let us proceed case wise.

Beginning with γ > 0, we can see that, by definition, this implies that β > 0 also. Furthermore, the

definitions of β and γ also reveal that

β

γ
= x+

1

γ

(
hTT +

hHθTT

θH

)
>x,

and thus we have that (
1− ρβ

γ

)
eρx < (1− ρx)eρx ≤ 1.

Therefore, the left-hand side of Equation (21) at a= 0 is strictly greater than the right-hand side of (21) at

a= 0, implying that, respectively, this exponential function is always above the negative slope line, and thus

there is no solution to the first order condition in this setting. By applying these arguments to Equation (19)

and recalling that γ > 0 in this case, Equation (20) then shows that V ′(a)< 0 for all a ∈R+. For γ = 0, we

can quickly recognize from Equation (19) that, again, V ′(a)< 0 for all a.

Let us now suppose that γ < 0. Through Equation (20), we have that, once V ′(a) > 0, it will remain

positive for all increasing values of a. So, we now partition the γ < 0 case into sub-cases evaluating the initial

sign of V ′(a) at a= 0. Here, we see that, at a= 0, γ(1− e−ρ(x+a))−ρβ−γρa= γ(1− e−ρx)−ρβ. In sub-case

that β ≥ 0, or, equivalently, − (hTT +hHθTT/θH)/x≤ γ < 0, we find that

γ(1− e−ρx)− ρβ < 0,

and thus V (a) is decreasing at a= 0. This also implies that the right-hand side of Equation (21) starts above

the exponential in the left-hand side of (21), ensuring that there will be a unique solution to the first order

condition on R+. Similarly, if β < 0 but γ(1− e−ρx)<ρβ still holds, then the same arguments apply.

Finally, if β ≤ γ(1− e−ρx)/ρ with γ < 0, then V ′(a)≥ 0 at a= 0, and, by Equation (20), it will remain so

for all a∈R+. Q.E.D.

Proof of Theorem 1. We begin by proving the first statement: a∗
∞ > 0 if and only if TLB <T < TUB

under the case that γ ≥ 0. If γ ≥ 0, then by Proposition 3, a∗
∞ = Ā= S̄ − x− TθT . Hence, it is immediately

true that a∗
∞ > 0 if and only if T < TUB. Since TLB ≤ 0 by consequence of γ ≥ 0, we complete the proof in

this setting.
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If γ < 0, Proposition 3 provides that a∗
∞ = (ã∧Ā) if β > γ(1−e−ρx)/ρ, where ã > 0 is given by Equation (6).

By the preceding arguments, notice that if and only if T ≥ TUB, then Ā= 0. Now, we can further observe that

among the streamlined model coefficients, α, β, γ, only β depends on T . Specifically, with the additionally

defined η, we have that β = γx+ ηT . Hence, the condition for ã > 0 can be re-expressed to

γx+ ηT > γ(1− e−ρx)/ρ,

and this immediately simplifies to T > TLB. Hence, we have that ã > 0 if and only if T > TLB and that Ā > 0

if and only if T < TUB, which proves that a∗
∞ > 0 if and only if T ∈ (TLB, TUB). In particular, a∗

∞ = (ã∧ Ā)> 0

on this interval. Moreover, let us observe that the argument of the Lambert-W function in the expression

for ã in (6) simplifies to

−e−ρx+ βρ
γ

−1 =−e−ρx+ ρ
γ (ηT+γx)−1 =−e

ηρ
γ

T−1.

Likewise, Equation (6) itself simplifies to

x+ ã=
1

ρ

(
1+W

(
−e

ηρ
γ

T−1
))

− η

γ
T. (22)

Considering each of the two components of (ã∧ Ā) individually, let us observe how they each depend on

T . Starting with ã, by Equation (22), we can see that

∂ã

∂T
=

1

ρ

∂

∂T
W

(
−eρηT/γ−1

)
− η

γ
.

Using the fact that dW (z)/dz =W (z)/(z(1+W (z))) for z ∈ (−1/e,0), this simplifies to

∂ã

∂T
=−η

γ

1−W
(
−eρηT/γ−1

)
1+W (−eρηT/γ−1)

.

Because γ < 0 and because the principal branch Lambert-W function is greater than −1 for all arguments

greater than −1/e, we have that ∂ã/∂T > 0 for all values of T . Turning to the second component within the

minimum, we can quickly observe from the definition of Ā that

∂Ā

∂T
=−θT .

Thus, the dependence of a∗
∞ on T is clear: starting from TLB, a

∗
∞ increases according to ã until ã intersects

Ā, and then decreases from this point until reaching TUB. Hence, we can find that this change point is given

by the unique T at which ã= Ā. Setting the two quantities equal to one another, we have

1

ρ

(
1+W

(
−e

ηρ
γ

T−1
))

− η

γ
T −x= S̄−x−TθT ,

and this simplifies to the definition of T̂ in Equation (8). Q.E.D.
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Proof of Theorem 2. Recall the following notation and previously proven results

1. a∗
∞ := argmina∈A V (a)

2. amin := argmina∈AWT (a)

3. Both a∗
∞ and amin are unique.

4. Based on the analysis in the proof of Proposition 1, depending on the problem parameters, there are 3

possible ways WT (a) behaves as a function of a.

(a) WT (a) is strictly increasing, then amin = 0. Importantly and in particular, WT (a) is strictly increas-

ing to the right of amin.

(b) WT (a) is strictly decreasing, then amin = amax. Importantly and in particular, WT (a) is strictly

decreasing to the left of amin. Meaning, as we decrease a, starting from amin, the value of WT (a)

increases.

(c) WT (a) has a unique minimum in (0, amax), it strictly decreases before it and strictly increases after.

5. The conclusion from the item above is that if we pick any ã ∈ A which satisfies ã ̸= amin (but both

ã > amin and ã < amin are possible), then if we move from ã to amin, the value of WT (a) strictly

decreases.

6. Based on the analysis in the proof of Proposition 3, depending on the problem parameters, there are 3

possible ways V (a) behaves as a function of a.

(a) V (a) is strictly increasing.

(b) V (a) is strictly decreasing

(c) V (a) decreases, then has a unique minimum in R+, then strictly increases.

7. From the last item, we can conclude that if we move from a∗ to any other ã ∈ A, V (a) strictly

increases. We can also deduce that V ′(a) can be zero at most once, and that if it does, then this point

is a minimum.

First, if WT (amin) =C, since amin is unique, amin is the only feasible value for a in A, and therefore it is

the unique solution, i.e., a∗
C = amin. Next, assume that WT (amin)< C. If WT (a

∗
∞)≤ C, then a∗

∞ is feasible

and uniquely minimizes V (a) in A. Thus it is the unique solution, i.e., a∗
C = a∗

∞.

We are left with the case where WT (amin)<C and WT (a
∗
∞)>C. In particular, we must have amin ̸= a∗

∞.

By the properties listed above, when we start at a∗
∞ and go towards amin, WT (a) must strictly decrease and
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V (a) must strictly increase. Since WT (a) is continuous, there must be a value for a, call it ã, strictly between

a∗
∞ and amin for which WT (ã) =C, which also means ã is feasible. Additionally, any other value for a before

we reach ã must have WT (a)>C and hence is not feasible. Any value of a after ã must have a larger value

for V (a), which we are trying to minimize. We can conclude that there exists a unique solution a∗
C for the

optimization problem and it is given by the unique solution to the equation WT (a) =C. Q.E.D.

Proof of Proposition 4. Throughout this proof we assume that WT (amin)<C. First, if WT (a
∗
∞)≤C,

then Γ= 0, and problems (11) and (13) are identical and their solution is a∗
∞. Theorem 2 assures us that in

this case, the solution to (12) satisfies that a∗
C = a∗

∞, which proves the desired result.

We turn to the case where WT (a
∗
∞)>C. In this case, Γ> 0 and Theorem 2 assures us that amin ̸= a∗

∞ and

that a∗
C is the unique value of a ∈A strictly between amin and a∗

∞ such that WT (a) = C. In particular, a∗
C

must be an internal point in A and W ′
T (a

∗
C) ̸= 0.

Next, we leverage a structural property inherent in V (a). Recall that

V (hR, hH , a) = hRWR(a)+ px(a)hTT +hHWH(a),

and, therefore,

V (hR, hH , a)+ΓWT (a) = hRWR(a)+ px(a)hTT +hHWH(a)+ΓWR(a)+ΓWH(a)

= (hR +Γ)WR(a)+ px(a)hTT +(hH +Γ)WH(a) = V (hR +Γ, hH +Γ, a),

Namely,

V (hR +Γ, hH +Γ, a) = V (hR, hH , a)+ΓWT (a). (23)

Taking the derivative of the right-hand side with respect to a and using the definition of Γ, we obtain:

(V (hR, hH , a)+ΓWT (a))
′
= V ′(hR, hH , a)−

V ′(hR, hH , a
∗
C)

W ′
T (a

∗
C)

W ′
T (a).

Clearly, this derivative equals zero for a= a∗
C . By (23), this also means that the derivative of the left hand-

side is zero for a= a∗
C . However, from the analysis in the proof of Proposition 3, we know that V ′(hR, hH , a)

(for any hR, hH > 0) can be zero at most once in R+. Moreover, if V ′(hR, hH , ã) = 0 for ã∈ (0, Ā), then ã is a

unique global minimum of V (hR, hH , a) in A. Therefore, a∗
C is the unique solution to (12), which concludes

the proof. Q.E.D.
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