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Problem definition: Many outpatient care providers offer virtual service that patients can access via

televisits. Televisits allow patients to wait to be seen in the location of their choice, protected from exposure to

ill patients and without going through the trouble of physical travel. There is evidence, however, that televisits

are more likely to lead to a supplementary in-person visit, consuming additional resources that could have

been saved if the patient’s initial visit was in-person. Given this trade-off, we study whether an outpatient

care provider should adopt virtual service and, if so, how best to manage a practice that simultaneously

offers both virtual (or URL) and in-person (real-life, or RL) services. Methodology/results: We develop a

stylized queueing-game model, which incorporates patient strategic choice between the two service channels.

We study how a revenue-driven provider should allocate capacity between these two channels and how to

incentivize patients for in-person visits. We find that the size of the system, measured by the total available

service capacity relative to total patient demand, plays a determining role here. Small and large systems are

better off focusing on one channel only and have no need to use in-person incentives, whereas medium-sized

systems can benefit from offering both channels and in-person incentives. We also find that overall patient

access to care may be hurt with the use of in-person incentives, unless the payment gap between the two

channels is significantly large. Managerial implications: Despite the growing adoption of telemedicine,

offering virtual service may not be the best choice for all providers. Capacity coordination between the

virtual and in-person service channels has to be carefully balanced. Furthermore, in-person incentives need

to be used with caution, otherwise patient access to care may be impaired. Proper financial incentives set

up by the payer may prevent such a negative outcome.
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1. Introduction

The COVID-19 pandemic accelerated the use of virtual services in general and telemedicine

in the context of healthcare services in particular (Bokolo 2020, Kadir 2020). Telemedicine

enables the provision of remote clinical services via real-time communication between

patients and healthcare providers through video conferencing and remote monitoring (Mon-

aghesh and Hajizadeh 2020). Virtual services, which save traveling costs and are associated
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with lower waiting costs for patients, can increase the efficiency of healthcare delivery

(Wong et al. 2021, Kadir 2020, Hur and Chang 2020). These virtual services, however, may

also have an inherent potential for providing low-value instead of quality care (O’Reilly-

Jacob et al. 2021). Indeed, research has shown that a virtual visit may lead to a supple-

mentary in-person visit for the same medical concern within a short period of time due to

misdiagnosis and/or inadequate treatment (McConnochie et al. 2015, Ashwood et al. 2017,

Shi et al. 2018). This situation can have a negative impact on a provider’s operational

efficiency. For instance, Li et al. (2021) found that when using telemedicine, on-demand

virtual care increases follow-up care and, therefore, episode costs. By analyzing a three-year

data set from a large payer, they found that patients with initial visits for acute respiratory

infection were more likely to seek follow-up care within seven days after a virtual visit than

after in-person visits (10.3% vs. 5.9%). In addition, Bavafa et al. (2018) found that e-visits

trigger about 6% more office visits and that physicians accept 15% fewer new patients each

month following the adoption of e-visits. These results, however, are not always consistent;

for example, Reed et al. (2021) found that e-visits lead to only slightly more supplementary

in-person visits compared with an initial conventional in-person visit.

Despite the mixed results on health outcomes, telemedicine will likely continue to grow

in the wake of COVID-19. It can never, however, replace in-person visits (Rosenthal 2021).

In-person care can offer benefits beyond virtual care, such as certain diagnosis/tests that

can only be done in person, better communication, and a closer doctor-patient relationship.

During the height of the pandemic, there was payment parity between telehealth and in-

person care. That is, televisits were covered at the same rate as if they were in-person

visits. With the end of the pandemic in sight, in-person visits are regaining popularity from

patients as well as providers. This shift has led to ongoing policy discussion that focuses

on payment equity rather than parity in the post-pandemic era (Shachar et al. 2020). In

other words, the general opinion is that reimbursing virtual visits, which tend to be shorter

and include fewer diagnostic services than in-person visits, at identical rates as in-person

visits represents over-payment. In the US, these higher reimbursement rates are scheduled

to end soon unless lawmakers choose to extend the payment parity policy.

Facing these changes, providers have started re-orienting their resources toward in-person

visits. A 2022 McKinsey report reveals that as the pandemic abates, more physicians are

gravitating away from virutal care and would prefer a return to in-person care (Cordine

et al. 2022). There have been a 13% increase in physicians recommending in-person visits
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over telehealth and 10% increase in physicians offering in-person care only since July 2020.

Providers are endeavoring to encourage in-person visits, and they take efforts in a variety

of forms such as improving the in-clinic encounter experience, investing in a better physical

service environment, and issuing a transportation bonus (e.g., a parking voucher, a day

pass for subways, and compensation for transportation costs; the reader is referred to entire

issue focusing on offering (free) transportation services using a third-party service (The

American Academy of Family Physicians 2019)). For ease of discussion, we use incentive

(or bonus) as an umbrella term for such efforts.

Our research is motivated by the changing landscape of telemedicine and seeks to under-

stand how an outpatient care provider can best run a practice that offers both in-person

(real-life, RL) and virtual (or URL) services. We focus on the setting of an urgent care

center or a community clinic that patients visit only when they feel sick. An example

of such a setting, mentioned in Cakici and Mills (2022), is Northwell Health, the largest

healthcare provider in New York State. When patients seek urgent care, they are offered

two options – coming in for an in-person visit or booking a virtual visit. Patients weigh

these two alternatives before deciding on one. The utilities/costs associated with these

two options are different. In-person visits require waiting in the clinic, whereas patients,

who opt for the virtual visit, have the option to stay in the comfort of their home or any

alternative location the patient prefers. Hence the waiting cost rate for virtual visits is

smaller. Moreover, there are traveling costs (e.g., transportation and parking costs as well

as time) associated with in-person visits. A virtual visit, however, comes with the catch of a

possible supplementary in-person visit that requires the patient to travel to the clinic, join

the queue of patients waiting for an in-person visit, and then wait for the next available

service slot.

To efficiently manage these two channels for outpatient care, providers have two oper-

ational levers. The first is to allocate capacity; that is, given the daily service capacity,

set the number of service slots for each channel. Providing more service slots will decrease

the average waiting time in that channel, and consequently, influence patients’ perceived

utilities regarding both channels. The second operational lever is to incentivize patients

for their (first and second) in-person visits, as discussed above.

We study how providers should use these two operational levers. In particular, we develop

a stylized queueing-game model to determine the optimal capacity allocation and the use

of in-person visit incentives in an urgent care center, where patients can choose between

https://www.gohealthuc.com/northwell
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the in-person channel or virtual channel. In our model, the provider faces an exogenous

stream of strategic patient demand. A strategic patient considers the anticipated waiting in

each channel and the probability of needing a supplementary in-person visit after a virtual

one. The patient has three options – walking-in for an in-person visit, booking a virtual

visit, and balking. If an in-person visit is chosen, the patient’s utility is the service reward

net the waiting cost and traveling cost associated with the in-person channel. If a virtual

visit is chosen, the patient’s utility incorporates the waiting cost in the virtual channel and

the expected utility of needing a possible supplementary in-person visit, which will incur

additional waiting and traveling costs to attend the in-person visit. Lastly, if the patient

balks, the utility is normalized to zero. In the model, patient choice is endogenous to the

provider’s capacity allocation because the waiting cost is influenced by the service capacity

in each channel. The provider seeks to maximize the total revenue from both channels,

by judiciously allocating capacity to each channel (and setting up incentives for in-person

visits).

We first show that given any capacity allocation, there exists a unique mixed-strategy

equilibrium in patients’ choice. Since patients have three alternatives (televisit, in-person

visit, or balk), there are, in total, seven equilibrium regions depending on how patients

mix their choices. With the goal of maximizing revenue, we fully characterize the optimal

allocation of capacity between the two service channels, where the in-person channel serves

both first in-person visits and the second (supplementary) visits of patients from the virtual

channel. The optimization incorporates patient equilibrium, which is endogenous to the

capacity allocation. We find that the optimal system configuration (i.e., which channels

to utilize and how much capacity to allocate to each) depends on the size of the system

measured by the total available service capacity. In particular, when the exogenous stream

of patient demand is fixed, a provider who has either limited or abundant service capacity

(relative to patient demand) achieves a higher revenue when focusing on only one channel.

When focusing on the virtual channel, some capacity must still be reserved for the in-

person channel to serve patients who require a supplementary visit following a virtual one.

Medium-sized systems, in contrast, can achieve higher revenue when providing both service

channels and allowing patients to strategically choose their preferred channel.

To further improve operational performance, the provider can set up incentives for in-

person visits to attract more patients. We fully characterize the joint optimal decision for

capacity allocation and the use of incentives. It is natural to see that the use of in-person
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incentives increases total revenue. What is more interesting is that adopting incentives can

fundamentally change the optimal system design. For example, a system optimally designed

to focus on the virtual channel without incentives may be optimized by changing to the

in-person channel (and vice versa) with an in-person visit incentive. One would expect the

use of incentives to increase the total number of patients served (i.e., the total rate at which

patients access these two service channels, or simply put, the total access rate) because the

incentive is set to attract more in-person visits, which do not require supplementary visits

and hence do not need to draw additional service resources. This, however, is not always

true; the use of in-person incentives may actually lead to a decrease in the total access

rate. The driving force behind this “backfire” is the potential shift of the optimal system

design under in-person incentives: the provider may opt to serve fewer patients who come

with a higher payment rate. To avoid such a negative impact on social welfare, one solution

we identify is in line with the idea of “payment equity” discussed above. We show that

if the payment rates for these two types of visits are sufficiently differentiated, the total

access rate will not decrease with the adoption of in-person incentives by a revenue-driven

provider.

The rest of the paper is organized as follows. In Section 2 we briefly review the relevant

literature. In Section 3, we present the basic model and introduce the provider’s objective

in regard to capacity allocation decisions for the two service channels. Section 4 analyzes

the different equilibrium regions and the optimal capacity allocation. In Section 5, we

study the option of providing incentives for in-person visits. Section 6 presents concluding

remarks and a few relevant directions for future research. All proofs of the technical results

are shown in the Online Appendix.

2. Literature Review

This research draws upon the literature on healthcare operations management (OM) and

queueing studies with strategic customers. We review each stream below.

2.1. Healthcare OM

Within the healthcare OM literature, our work is related to the research that (1) uses

queueing models to investigate system design questions in outpatient care and (2) studies

multi-channel care settings, in particular where one channel offers the telemedicine option.

Two of the studies from the first stream of literature include Green and Savin (2008),

Zacharias and Armony (2016). They developed stylized queueing models to investigate
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system design questions such as panel size selection and capacity decisions. An interesting

phenomenon addressed by this literature is that patients may need to revisit the provider

after (no-shows at) initial visits. Although this patient “returning” feature also presents

in our model, our patient revisits require a different source of capacity compared to their

initial visits. In addition, patients choose between two channels to access care in our model,

while the prior literature mostly focuses on a single channel for in-person visits.

Recently, a few papers addressed OM issues related to multiple access channels for

outpatient care (e.g., in-person appointment visits, walk-ins, virtual visits, visits to different

providers). An outpatient care setting where strategic patients choose between a walk-in

visit and an appointment was studied in Liu et al. (2023). They characterized the different

equilibrium cases and allocated capacity to the two channels. In their paper, only walk-in

patients may balk. Huang et al. (2022) studied the doctor-shopping behavior (i.e., patients

seek opinions from multiple doctors without referrals) and its impact on social welfare.

In the present work, we consider different levels of quality of care between the channels,

captured by the need for a supplementary in-person visit following a virtual visit.

As telemedicine and video consultation gain popularity, research studying their effect

and patients’ preferences has started emerging. A telehealth setting for chronic strategic

patients was studied by Rajan et al. (2019). They found that telehealth increases both the

access rate and provider revenue. This is not necessarily true, however, when considering

supplementary in-person visits. In particular, as we and Cakici and Mills (2022) show,

maximizing provider revenue may hurt patient access when considering in-person supple-

mentary visits. Bavafa et al. (2021) studied a chronic-care setting, incorporating telehealth

and office visits. Their goal was to set the time interval between consecutive visits while

investigating the impact of different reimbursement schemes on patient panel size, physi-

cian earnings, and overall patient health. They showed that e-visits may have a negative

effect in terms of panel size/health.

Recently, Zychlinski (2023) and Cakici and Mills (2022) studied a similar setting to ours

with in-person virtual and returning channels. Using a fluid model approximation, Zychlin-

ski (2023) addressed scheduling and capacity allocation decisions among the three service

channels: in-person, virtual and supplementary service for returning virtual patients. They

developed an index-based policy that demonstrates the importance of capacity coordi-

nation among the channels. Using a three-stage game theoretic model, Cakici and Mills

(2022) studied the effect of telehealth reimbursement policies on patient access to acute
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care. In contrast to Cakici and Mills (2022), our focus here is on the operational aspects

of managing such hybrid systems rather than on the financial/reimbursement aspect. In

particular, we fully characterize the optimal system design in terms of capacity allocation

for different system sizes. Then, we study the effect of utilizing an in-person incentive on

revenue and total access rate. In a sense, Cakici and Mills (2022) and our work complement

each other and contribute to the understanding of hybrid healthcare settings.

2.2. Queueing Studies with Strategic Customers

In terms of methodology, our research is based on the analysis of queuing systems with

strategic customers. This broad research area, which started with Naor (1969), considers

customer join/balk decisions based on how sensitive customers are to waiting as well as

optimizing system efficiency/social welfare by determining the service capacity, pricing, or

priority schemes. Hassin and Haviv (2003) offered a comprehensive review of this area.

Below we draw attention to studies that are most relevant to our work.

Hassin and Roet-Green (2020) studied a service system that requires customers to travel

to the queue to be served. Specifically, customers observe the queue length and then decide

whether to travel. In our work, we consider a virtual service channel that requires no

traveling and an in-person channel (first- and second-time visitors) that requires travel-

ing. Furthermore, we optimize the travel cost by considering a (transportation) bonus to

increase revenue. Another recent relevant paper that considered a traveling cost is that by

Baron et al. (2022) who studied an omnichannel service system that includes walk-in and

online service channels. They showed that although the online channel increases revenue,

in equilibrium it also reduces customers’ individual utility and social welfare. To overcome

this, the authors suggested prioritizing walk-in customers; this benefits the service provider

and customers in equilibrium compared with only having a walk-in service channel.

There are different ways to improve customer service experience. Baron et al. (2014), for

example, used strategic idling to study scheduling policies, mainly in healthcare systems

where patients have to go through several diagnostic and treatment stations. We suggest

and analyze a different approach: incentives to attract in-person patients that compensate

them for their traveling costs/burden. We show that while using these incentives is likely

to increase revenue, it might also harm patients’ service access levels.

Finally, we conclude this section by summarizing our contributions. We develop the

modeling framework for an outpatient care provider who offers both in-person and vir-

tual services. Our model captures the key trade-off strategic patients have to make when

choosing between these two channels for service.
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An important and interesting feature of our model is that it operationally captures the

difference in care quality of these two channels: patients who visit the virtual channel may

need a second supplementary in-person visit. We first prove the existence and uniqueness

of a mixed patient strategy in equilibrium, based on which we characterize the optimal

capacity allocation and use of in-person incentives for a revenue-driven provider. We find

that the size of the system, measured by the total available service capacity relative to total

patient demand, plays a critical role in determining the provider’s optimal decisions. Small

and large systems are better off focusing on one channel only and have no need to use in-

person incentives, whereas medium-sized systems can benefit from offering both channels

and in-person incentives. We advise caution when using in-person incentives, which, as we

demonstrate, may backfire and hurt overall patient access to care.

3. The Basic Model

A provider offers two service channels to their patients: in-person (i.e., face-to-face) and

virtual. The provider’s daily service capacity is fixed at µ service slots (all slots have equal

length, e.g., 10 minutes). They need to decide how many slots to allocate to the face-to-face

channel (denoted by µf) and the virtual channel (denoted by µv) such that µf + µv = µ.

Note that the actual service time of patients may have some variability, but the provider

is expected to be able to serve µf in-person patients and µv virtual patients per day.

Homogeneous strategic patients arrive following a Poisson process with daily rate Λ.

Offered these two channels, each patient has three options: using the face-to-face channel,

the virtual channel, or balking. As patients are homogeneous, they will use the same

mixed strategy in the equilibrium, i.e., choosing the in-person channel with probability pf ,

choosing the virtual channel with probability pv and balking with probability pb if such a

equilibrium exists. Let λf = pfΛ and λv = pvΛ denote the corresponding arrival rates for

the in-person and virtual channels, respectively. Since the virtual channel does not have

the same effectiveness as the face-to-face channel, some patients need a supplementary

in-person service visit with the same provider after their virtual visit. The supplementary

visit happens with probability δ, which reflects the quality of the virtual service (a smaller δ

indicates better service quality). To avoid trivialities, we assume that δ ∈ (0,1). We further

assume that face-to-face visits always resolve patient health issues.

To analyze patient strategy, we start by studying the utility of each choice. We begin

with the arrival–service process, which is modeled as a queueing network (see Figure 1).



9

To make the analysis more tractable, we assume that the service process is Markovian and

hence the queueing network is a Jackson network. In steady state, the Jackson network

performs as two M/M/1 queues, one for the virtual channel and the second for the face-to-

face channel. The arrival and service rates are λv and µv in the virtual queue and λf + δλv

and µf in the in-person queue.

Figure 1 The hybrid model.
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3.1. Patient’s Utility

Patients make their choices based on the expected utility of each channel.

Cost of each face-to-face visit. We consider a traveling cost T that is associated with

each visit (e.g., transportation cost, parking cost, etc.). In general, T represents a fixed

inconvenience cost incurred by the in-person channel. Since each queue in the Jackson

network can be regarded as an M/M/1 queue, the expected waiting time for each face-to-

face visit is

Wf(λf , λv) = [µf − (λf + δλv)]
−1 . (1)

Let θf denote the waiting cost per time unit in the face-to-face channel. Then, the

expected total cost associated with each face-to-face visit is

Cf(λf , λv) = T + θfWf(λf , λv). (2)

Cost of each virtual visit. The expected waiting time in the virtual channel is

Wv(λv) = [µv −λv]
−1 . (3)
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Let θv denote the waiting cost per time unit in this channel. Since patients in the virtual

channel can be anywhere during their appointment, while patients in the face-to-face chan-

nel must commute to and wait in the clinic, we assume that θf ≥ θv. In particular, during

a pandemic outbreak, the gap between θv and θf increases, as patients in the virtual chan-

nel have a lower exposure risk to other ill patients. Though there is smaller waiting cost

and no traveling cost in the virtual channel, virtual patients may need a supplementary

face-to-face visit, with all the additional costs associated with it. The expected total cost

of each virtual service is, therefore,

Cv(λf , λv) = θvWv(λv)+ δCf(λf , λv). (4)

Patients receive a service reward R once their healthcare demands are satisfied. Without

loss of generality, we assume that the utility of balking is 0. Then, by (1)–(4), the following

utility for each alternative is:

Uf(λf , λv) =R−T − θf [µf − (λf + δλv)]
−1 , (5)

Uv(λf , λv) =R− θv [µv −λv]
−1− δT − δθf [µf − (λf + δλv)]

−1 , (6)

Ub(λf , λv) = 0.

Homogeneous patients will choose (λf , λv) to maximize their expected utility

(λfUf(λf , λv)+λvUv(λf , λv))/Λ, for which the denominator can be omitted from the anal-

ysis because it is a constant.

3.2. The Provider’s Problem

The provider receives a reward rf for each patient who chooses the face-to-face channel, and

a reward rv for each patient who chooses the virtual channel. The provider’s problem is to

allocate capacity in anticipation of patient decisions to maximize their total compensation:

max
µf ,µv

rfλf + rvλv (7)

s.t. µf +µv = µ (8)

µf ≥ 0, µv ≥ 0 (9)

(λf , λv) = argmax
λv+λf≤λ

[λfUf(λf , λv)+λvUv(λf , λv)] (10)

Uf(λf , λv), Uv(λf , λv) as defined in (5) and (6). (11)
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Remark 1. The provider’s reward structure in our model is quite flexible and can cap-

ture various reimbursement regimes in healthcare. The pair (rf , rv) naturally represents a

bundle payment mechanism because rv covers the whole episode of care, which may involve

a supplementary face-to-face visit. Under the fee-for-service payment mechanism, suppose

that the payment for a virtual visit and a face-to-face one is rfeev and rfeef , respectively. The

objective (7) remains valid by setting (rfeef , rfeev + δrfeef ) as (rf , rv).

4. Patients’ Equilibrium and Provider’s Optimal Decision
4.1. Patients’ Equilibrium Strategy

The formulation (7)-(10) is well defined if patient equilibrium exists and is unique. We

establish this result in this section. We first study the effective arrival rate to each channel

in equilibrium for any given capacity allocation. To illustrate the different strategies, we

use B to denote the pure strategy of balking, V to denote the pure strategy of choosing the

virtual channel, and F to denote the pure strategy of choosing the face-to-face channel.

For mixed strategies, we use letter combinations of B, V and F . For example, we use BF

to denote the mixed strategy of the face-to-face channel and balking. In total, we have

seven different types of strategies: B, V , F , BV F , BF , BV and V F .

Per (10), the effective arrival rates in equilibrium (λf , λv) must satisfy the following

condition for x∈ {f, v, b}:

If λx > 0, then Ux(λf , λv) =max{Uf(λf , λv),Uv(λf , λv),Ub(λf , λv)} .

That is, in equilibrium, no patient will choose a channel with lower utility than the other

channel or balking. Table 1 presents the different strategies and the corresponding effective

arrival rates and utilities.

Table 1 Equilibrium strategies

Strategy Effective Arrival Rates Utilities

B λf = 0, λv = 0 Uf (0,0)≤ 0, Uv(0,0)≤ 0
V λf = 0, λv = λ Uf (0, λ)≤Uv(0, λ), Uv(0, λ)≥ 0
F λf = λ, λv = 0 Uf (λ,0)≥Uv(λ,0), Uf (0, λ)≥ 0

BV F λf +λv ≤ λ Uf (λf , λv) =Uv(λf , λv) = 0
BF λf ≤ λ, λv = 0 Uf (λf ,0) = 0, Uv(λf ,0)≤ 0
BV λf = 0, λv ≤ λ Uf (0, λv)≤ 0, Uv(0, λv) = 0
V F λf +λv = λ Uf (λf , λv) =Uv(λf , λv)≥ 0

Theorem 1 establishes the existence and uniqueness of the equilibrium strategy for

patients, given any service capacity allocation (µf , µv).
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Theorem 1. Consider the following cases:

1. When (µf , µv) ∈ Region B, there exists a unique equilibrium strategy – strategy B –

such that λf = λv = 0. Region B satisfies:

θvµ
−1
v + δθfµ

−1
f ≥R− δT,

µf ≤ θf [R−T ]−1 .

2. When (µf , µv) ∈ Region V , there exists a unique equilibrium strategy – strategy V –

such that λv = λ. Region V satisfies:

θv [µv −λ]−1− (1− δ)θf [µf − δλ]−1 ≤ T − δT,

θv [µv −λ]−1+ δθf [µf − δλ]−1 ≤R− δT,

µf ≥ δλ+ δθf [R− δT ]−1 ,

µv ≥ λ+ θv [R− δT ]−1 .

3. When (µf , µv) ∈ Region F , there exists a unique equilibrium strategy – strategy F –

such that λf = λ. Region F satisfies:

µf ≥ λ+ θf [R−T ]−1 ,

θvµ
−1
v − (1− δ)θf [µf −λ]−1 ≥ T − δT.

4. When (µf , µv) ∈ Region BV F , there exists a unique equilibrium strategy – strategy

BV F – such that λf +λv ≤ λ. Region BV F satisfies:

µv ≥ θv [(1− δ)R]−1 ,

µf − δµv ≥ θf [R−T ]−1− δθv [(1− δ)R]−1 ,

µf +(1− δ)µv ≤ λ+ θf [R−T ]−1+ θvR
−1.

The effective arrival rates (λf , λv) can be derived from Uf(λf , λv) =Uv(λf , λv) = 0.

5. When (µf , µv)∈Region BF , there exists a unique equilibrium strategy – strategy BF

– such that λf ≤ λ, λv = 0. Region BF satisfies:

θf [R−T ]−1 ≤ µf ≤ λ+ θf [R−T ]−1 ,

µv ≤ θv [(1− δ)R]−1 .

The effective arrival rate λf can be derived from Uf(λf ,0) = 0.
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6. When (µf , µv)∈Region BV , there exists a unique equilibrium strategy – strategy BV

– such that λf = 0, λv ≤ λ. Region BV satisfies:

θvµ
−1
v + δθfµ

−1
f ≤R− δT, (12)

θv [µv −λ]−1+ δθf [µf − δλ]−1 ≥R− δT for µv >λ and µf > δλ, (13)

µf − δµv ≤ θf [R−T ]−1− δθv [(1− δ)R]−1 . (14)

The effective arrival rate λv can be derived from Uv(0, λv) = 0.

7. When (µf , µv)∈Region V F , there exists a unique equilibrium strategy – strategy V F

– such that λf +λv = λ. Region V F satisfies:

θvµ
−1
v − (1− δ)θf [µf −λ]−1 ≤ (1− δ)T for µf >λ, (15)

θv [µv −λ]−1− (1− δ)θf [µf − δλ]−1 ≥ (1− δ)T for µv >λ, (16)

µf +(1− δ)µv ≥ λ+ θf [R−T ]−1+ θvR
−1, (17)

µf ≥ δλ+ θf [R−T ]−1 . (18)

The effective arrival rates (λf , λv) can be derived from λf + λv = λ and Uf(λf , λv) =

Uv(λf , λv).

Per Theorem 1, all possible capacity allocations can be divided into seven mutually

exclusive and collectively exhaustive cases. Letting the x-axis represent µf and the y-axis

represent µv, Figure 2 illustrates these seven regions.

In equilibrium, when µf is small, no patient will choose the face-to-face channel; when

µv is small, no patient will choose the virtual channel. When both µf and µv are small, all

patients will balk. It is worth noting that µf has an effect on both channels’ – face-to-face

and virtual – utilities. In particular, when µf is small, those who choose virtual visits can

still suffer because some of them need a supplementary face-to-face visit for which they

will have to wait a long time and, accordingly, have low utility. Hence, when µf is small,

regardless of how large µv is, some patients will balk. When µf is large, however, regardless

of how small µv is, no patient will balk.

4.2. Optimal Capacity Allocation

Thus far, we have analyzed patients’ equilibrium strategy given any capacity alloca-

tion, (µf , µv). In this section, we study the optimal capacity allocation in anticipa-

tion of patients’ equilibrium. Recall the seven regions of capacity allocation. We start
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Figure 2 An illustration of the seven regions and their corresponding equilibrium strategies
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by studying the optimal allocation in each region. Specifically, for each Region X ∈
{B,V,F,BV F,BF,BV,V F}, we add the constraint (µf , µv) ∈ Region X to problem (7).

We denote the optimal solution and the corresponding effective arrival rates subject to

Region X, if any, as (µX∗
f , µX∗

v ) and (λX∗
f , λX∗

v ). Then, we compare the value function

rfλ
X∗
f + rvλ

X∗
v for all X to find the global optimal capacity allocation.

1. For (µf , µv)∈Region B: All patients balk. Therefore, any feasible solution within this

region, if any, is optimal and correspondingly (λB∗
f , λB∗

v ) = (0,0).

2. For (µf , µv) ∈Region V : All patients choose the virtual channel. Therefore, any fea-

sible solution within this region is optimal and correspondingly (λV ∗
f , λV ∗

v ) = (0, λ).

3. For (µf , µv) ∈Region F : All patients choose the face-to-face channel. Therefore, any

feasible solution within this region is optimal and correspondingly (λF∗
f , λF∗

v ) = (λ,0).

4. For (µf , µv)∈Region BV F : We have Uf(λf , λv) =Uv(λf , λv) = 0; thus

λv = µv − θv [R− δR]−1 and λf + δλv = µf − θf [R−T ]−1 .

Noting that the provider’s total reward is linear in (λv, λf) and that in this region λv

(λf) linearly increases in µv (µf) with everything else being fixed, one would expect the

optimal capacity allocation to be a “bang-bang” type of control. Proposition 1 formalizes

this intuition.
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Proposition 1 (optimal capacity allocation subject to Region BV F ).

Let [µBV F
v

, µBV F
v ] denote the range for µv such that (µ − µv, µv) ∈ Region BV F . The

optimal capacity allocation is, accordingly, a boundary one:

• If rv ≥ (1+ δ)rf , then (µBV F∗
f , µBV F∗

v ) = (µ−µBV F
v , µBV F

v );

• Otherwise, (µBV F∗
f , µBV F∗

v ) = (µ−µBV F
v

, µBV F
v

).

For the corresponding effective arrival rates in equilibrium, we have

λBV F∗
f = µBV F∗

f − θf [R−T ]−1− δµBV F∗
v + δθv [R− δR]−1

and

λBV F∗
v = µBV F∗

v − θv [R− δR]−1 .

5. For (µf , µv)∈Region BF : we have Uf(λf ,0) = 0 and λv = 0; thus,

λf = µf − θf [R−T ]−1 .

It is evident that the optimal decision is to set µf as large as possible. Let µBF
f denote the

upper bound for µf such that (µf , µv)∈Region BF . Then,

(µBF∗
f , µBF∗

v ) = (µBF
f , µ−µBF

f ),

and

λBF∗
f = µBF

f − θf [R−T ]−1 .

6. For (µf , µv)∈Region BV : we have Uv(0, λv) = 0 and λf = 0; thus,

R− δT − θv [µv −λv]
−1− δθf [µf − δλv]

−1 = 0.

Obtaining the optimal allocation that maximizes rvλv in this region, however, is quite

involved. Proposition 2 provides detailed characterizations.

Proposition 2 (optimal capacity allocation subject to Region BV ).

Define

µ̃BV
v =

(
µ−

(
δ(θf − θv)+ (1− δ)

√
δθfθv

)
[R− δT ]−1

)
[1+ δ]−1 .

Then, we have
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• If µ ≥ λ(1 + δ) + θv [(1− δ)R]−1 + θf [R−T ]−1 or (µ − µ̃BV
v , µ̃BV

v ) ∈ Region V , any

allocation lying on the boundary between Region BV and Region V is optimal, leading to

λBV ∗
v = λ.

• Otherwise,

– If (µ− µ̃BV
v , µ̃BV

v )∈Region BV , (µBV ∗
f , µBV ∗

v ) = (µ− µ̃BV
v , µ̃BV

v ) and

λBV ∗
v =

(
µ− (

√
δθf +

√
θv)

2 [R− δT ]−1
)
[1+ δ]−1 ;

– If (µ − µ̃BV
v , µ̃BV

v ) /∈ Region BV , (µBV ∗
f , µBV ∗

v ) = (µ − µBV
v

, µBV
v

) where µBV
v

is the

lower bound for µv such that (µ−µv, µv)∈Region BV . Specifically,

µBV

v
=
(
µ− θf [R−T ]−1+ δθv [(1− δ)R]−1) [1+ δ]−1 ,

and

λBV ∗
v =

(
µ− θf [R−T ]−1− θv [(1− δ)R]−1) [1+ δ]−1 .

7. For (µf , µv)∈Region V F : we have Uv(λf , λv) =Uv(λf , λv) and λf +λv = λ; thus,

θv [µv −λv]
−1− (1− δ)θf [µf −λ+(1− δ)λv]

−1 = (1− δ)T.

Proposition 3 characterizes the optimal allocation as well as the effective arrival rates in

equilibrium subject to this region.

Proposition 3 (optimal capacity allocation subject to Region V F ). Let

[µV F
v

, µV F
v ] denote the range for µv such that (µ−µv, µv)∈Region V F .

• If rv > rf ,

(µV F∗
f , µV F∗

v ) = (µ−µV F
v , µV F

v )

and

λV F∗
v =min

{
λ, 1

δ

(
µ−λ− θv [(1− δ)R]−1− θf [R−T ]−1)} .

• If rv = rf , any feasible allocation is optimal and the corresponding effective arrival

rates in equilibrium satisfy

rfλ
V F∗
f + rvλ

V F∗
v = rfλ= rvλ.

• If rv < rf ,

(µV F∗
f , µV F∗

v ) = (µ−µV F

v
, µV F

v
) and λV F∗

f = λ.
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After deriving the optimal capacity allocation in each region, we are now ready to

characterize the global optimal capacity allocation. We start by defining four system-size

categories to facilitate the subsequent discussions.

Definition 1. Given the system’s primitives, we consider the following system-size cat-

egories with respect to the total service capacity µ.

1. Extremely small systems:

min
{
θf [R−T ]−1 , µBV

}
≤ µ<max

{
θf [R−T ]−1 , µBV

}
,

where µBV is the minimum µ required to attain Region BV , which is obtained by the

solution of µ to

R− δT − θvΦ
−1(µ)− δθf [µ−Φ(µ)]−1 = 0,

where

Φ(µ) =max
{
θv [(1− δ)R]−1 , µ

(√
δθvθf − θv

)
[δθf − θv]

−1
}
. (19)

2. Small systems:

max
{
θf [R−T ]−1 , µBV

}
≤ µ< λ+ θf [R−T ]−1+ θv [(1− δ)R]−1 .

3. Medium-sized systems:

λ+ θf [R−T ]−1+ θv [(1− δ)R]−1 ≤ µ< (1+ δ)λ+ θv [(1− δ)R]−1+ θf [R−T ]−1 .

4. Large systems:

µ≥ (1+ δ)λ+ θv [R(1− δ)]−1+ θf [R−T ]−1 .

We do not consider the case where µ < min
{
θf [R−T ]−1, µBV

}
because in this case

Region B is the only feasible region, making the problem trivial. Figure 3 illustrates the

four system-size categories in Definition 1.

Theorem 2 characterizes the optimal capacity allocation for each system-size category.

Theorem 2 (optimal capacity allocation). The optimal capacity allocation for each

system-size category is:

1. Extremely Small Systems: If θf [R−T ]−1 ≤ µBV , the optimal capacity allocation

is in Region BF ; otherwise, it is in Region BV .
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Figure 3 An illustration of the four system-size categories.
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2. Small Systems: If rf min{λ,µ− θf [R−T ]−1} ≥ rvλ
BV ∗
v , the optimal capacity allo-

cation is in Region BF (note that Region F is a special case of Region BF ); otherwise, it

is in Region BV .

3. Medium-sized Systems: If

rvλ
BV ∗
v ≥ rfλ+

1
δ
(rv − rf)

+
(
µ−λ− θv [R(1− δ)]−1− θf [R−T ]−1) ,

the optimal capacity allocation is in Region BV ; otherwise, it is in Region V F (note that

Region F is a special case of Region V F , and dominates Region V F when rf ≥ rv).

4. Large Systems: If rv ≥ rf , the optimal allocation is in Region V ; otherwise, it is in

Region F .

For extremely small systems, the optimal solution must be in the feasible region: either

BF or BV . When θf [R−T ]−1 ≤ µBV , Region BF is feasible; otherwise, Region BV is

feasible.

For small systems, Region BV F is dominated by Region BV or Region BF , as the

optimal solution is on the region boundary (see Proposition 1). When the face-to-face

channel is more beneficial, the provider should allocate all capacity to µf to attract as

many patients as possible to this channel. In contrast, when the virtual channel is more

beneficial, the provider should attract as many patients as possible to the virtual channel
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by setting a large µv and reserving a proper amount of capacity, µf , for virtual patients

requiring supplementary face-to-face services.

For medium-sized systems, Region BV F is sub-optimal. When rf is large enough,

attracting all patients to the face-to-face channel is more beneficial; otherwise, when rv

is large enough, attracting patients to the virtual channel (with some patients balking) is

more beneficial; when the difference between rv and rf is not too large, mixing the two

channels is more beneficial.

Lastly, for large systems, the provider should attempt to attract all patients to either

virtual or face-to-face channels depending on the relation between rv and rf .

In summary, Theorem 2 indicates that for most cases, the provider should focus on

one channel only. Serving patients from both channels is optimal only when the system is

medium sized and the gap between rv and rf is not too large.

5. Model with In-Person Visit Incentives

Providers are often engaged in efforts to incentivize face-to-face visits. This is especially

true the case in the post-pandemic era when providers are refocusing their attention on in-

person visits. We discussed several possible forms of such incentives in Section 1: improving

the in-clinic visit experience, investing in a better physical service environment, issuing a

transportation bonus, and so on. In this section, we explore the impact of these efforts

on the provider and patients. We will use the term bonus as an umbrella term for such

incentives. Let b denote the bonus for an in-person visit. The patient utility functions then

become

U b
f(λf , λv) =R−T + b− θf [µf −λf − δλv]

−1 ; (20)

U b
v(λf , λv) =R− θv [µv −λv]

−1− δT + δb− δθf [µf −λf − δλv]
−1 .

To limit the patient’s bonus so as not to exceed the payer’s reward, we require that b≤ rf .

It follows that δb≤ rv. These stipulations ensure that the expected net revenue is positive.

The effect of the bonus on patients’ choice is not straightforward. On the one hand,

the bonus might encourage patients to use the face-to-face channel for their first visit. On

the other hand, the bonus might encourage them to use the virtual channel, and in turn,

benefit from the bonus if and when a supplementary in-clinic visit is required. We start by

studying patients’ equilibrium given a fixed bonus. Then, we characterize the optimal joint

bonus and capacity decision that maximizes the provider’s revenue. Finally, we examine
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the impact of the bonus on the total access rate, i.e., the proportion of patients who do

not balk. The total access rate can be viewed a measure of social welfare (Cakici and Mills

2022).

5.1. Patients’ Equilibrium Strategy

Similarly to the basic model that does not offer a bonus (Section 4.1), given a fixed bonus b,

there could be seven types of patient strategies:B, V , F ,BV F ,BF ,BV and V F . Following

Theorem 1, Corollary 1 summarizes patients’ equilibrium strategies for any service capacity

allocation (µf , µv) and non-negative bonus b≥ 0.

Corollary 1.

• When (µf , µv) ∈ Region B, there exists a unique equilibrium strategy – strategy B –

such that λf = λv = 0. Region B satisfies the following conditions:

θvµ
−1
v + δθfµ

−1
f ≥R− δT + δb;

µf ≤ θf [R−T + b]−1 .

• When (µf , µv) ∈ Region V , there exists a unique equilibrium strategy – strategy V –

such that λv = λ. Region V satisfies the following conditions:

θv [µv −λ]−1− (1− δ)θf [µf − δλ]−1 ≤ (1− δ)(T − b);

θv [µv −λ]−1+ δθf [µf − δλ]−1 ≤R− δT + δb;

µf ≥ δλ+ δθf [R− δT + δb]−1 ;

µv ≥ λ+ θv [R− δT + δb]−1 .

• When (µf , µv) ∈ Region F , there exists a unique equilibrium strategy – strategy F –

such that λf = λ. Region F satisfies the following conditions:

µf ≥ λ+ θf [R−T + b]−1 ;

θvµ
−1
v − (1− δ)θf [µf −λ]−1 ≥ (1− δ)(T − b).

• When (µf , µv) ∈ Region BV F , there exists a unique equilibrium strategy – strategy

BV F – such that λf +λv ≤ λ. Region BV F satisfies the following conditions:

µv ≥ θv [(1− δ)R]−1 ,

µf − δµv ≥ θf [R−T + b]−1− δθv [(1− δ)R]−1 ;

µf +(1− δ)µv ≤ λ+ θf [R−T + b]−1+ θvR
−1.

The effective arrival rates (λf , λv) can be derived from U b
f(λf , λv) =U b

v(λf , λv) = 0.
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• When (µf , µv)∈Region BF , there exists a unique equilibrium strategy – strategy BF

– such that λf ≤ λ, λv = 0. Region BF satisfies the following conditions:

θf [R−T + b]−1 ≤ µf ≤ λ+ θf [R−T + b]−1 ;

µv ≤ θv [(1− δ)R]−1 .

The effective arrival rate λf can be be derived from U b
f(λf ,0) = 0.

• When (µf , µv)∈Region BV , there exists a unique equilibrium strategy – strategy BV

– such that λf = 0, λv ≤ λ. Region BV satisfies the following conditions:

θvµ
−1
v + δθfµ

−1
f ≤R− δT + δb,

θv [µv −λ]−1+ δθf [µf − δλ]−1 ≥R− δT + δb for µv >λ and µf > δλ;

µf − δµv ≤ θf [R−T + b]−1− δθv [(1− δ)R]−1 .

The effective arrival rate λv can be derived by U b
v(0, λv) = 0.

• When (µf , µv)∈Region V F , there exists a unique equilibrium strategy – strategy V F

– such that λf +λv = λ. Region V F satisfies the following conditions:

θvµ
−1
v − (1− δ)θf [µf −λ]−1 ≤ (1− δ)(T − b) for µf >λ,

θv [µv −λ]−1− (1− δ)θf [µf − δλ]−1 ≥ (1− δ)T for µv >λ,

µf +(1− δ)µv ≥ λ+ θf [R−T + b]−1+ θvR
−1;

µf ≥ δλ+ θf [R−T + b]−1 .

The effective arrival rates (λf , λv) can be derived by λf+λv = λ and U b
f(λf , λv) =U b

v(λf , λv).

Per Corollary 1, patients’ equilibrium strategies exhibit similar structures as the one

without a bonus. The divisions of these regions, however, slightly changes as the utility

functions incorporate b. Note that the sign of (1− δ)(T − b) affects the boundary shapes

between Region V and Region V F and between Region F and Region V F . Figure 4

illustrates these changes in the regions’ structures for different values of b. We can see

that with a positive bonus b, the boundaries are moving to the left, resulting in a smaller

Region B. When T − b is positive (the left plot), the shapes of the boundaries remain the

same. When, however, T − b is negative (the right plot), the shapes change: Region V ,

where all patients choose the virtual channel, shrinks significantly, while Region F , where

all patients choose the face-to-face channel, grows. Generally speaking, providing a bonus

for in-person visits can increase service utilization, especially for the face-to-face channel.
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Figure 4 Equilibrium regions for different values of b.

BV

B

BVF

BF
F

VF

V

BF

BVF

BV

B

V

VF

F

5.2. Optimal Joint Incentive and Capacity Decision

In this section, we study the provider’s joint decision regarding the bonus b and the capacity

allocation (µf , µv), to maximize the expected net reward

(rf − b)λf +(rv − δb)λv,

where (λf , λv) is the anticipated effective arrival rates in equilibrium given a bonus b and

capacity allocation (µf , µv). The challenge here is the fact that different b’s will lead to

different feasible equilibrium regions, and thus different forms of the optimal capacity

allocation, making joint optimization challenging.

In the following analysis, we first study the optimal capacity allocation given any b.

Conveniently, because we replace T with T − b, all the results follow directly from our

analysis in Section 4.2. To simplify the analysis, in Corollary 2, we summarize all possible

scenarios for the optimal capacity allocation for any given b.

Corollary 2. For any given b, the optimal capacity allocation (µ∗
f(b), µ

∗
v(b)) must result

in one of the following scenarios:

1. PURE Scenarios: All patients choose a pure strategy:

• The PURE-B Scenario: All patients choose to balk;

• The PURE-F Scenario: All patients choose the face-to-face channel;

• The PURE-V Scenario: All patients choose the virtual channel.

2. The NV Scenario: No patient chooses the virtual channel. Therefore, λv = 0 and

λf =min
{
λ,µ− θf [R−T + b]−1} .
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3. The NF Scenario: No patient chooses the face-to-face channel. Therefore, λf = 0

and λv = λNF
v , where

λNF
v =


min

{
λ, µ

1+δ
− (

√
δθf+

√
θv)2

(1+δ)(R−δT+δb)

}
, if

δ(θf−θv)+(1−δ)
√

δθfθv

(R−δT+δb)
≤ θf

R−T+b
− δθv

(1−δ)R
,

µ
1+δ

− θf
(1+δ)(R−T+b)

− θv
(1+δ)(1−δ)R

, otherwise.

(21)

4. The NB Scenario: No patient balks. Therefore, λv = λNB
v , where

λNB
v = 1

δ

(
µ−λ− θv [(1− δ)R]−1− θf [R−T + b]−1) and λf = λ−λNB

v . (22)

These six scenarios constitute a refined version of the regions defined in Theorem 1, as

they represent the possible cases of optimal capacity allocation. Specifically, Scenario NV

represents the optimal allocation in Region BF as well as the special case in Region F

where µ > θf/(R− T + b). Scenario NF represents the optimal allocation in Region BV

as well as the special case in Region V . Scenario NB represents the optimal allocation in

Region V F , excluding the cases of Region V or F .

Next, we determine the optimal b by studying how (µ∗
f(b), µ

∗
v(b)) change with b. In

particular, we identify the optimal b within each scenario. Then, we obtain the global

optimal joint decision of b∗ and (µ∗
f , µ

∗
v) by comparing these six scenarios.

For a PURE scenario, the optimal b is straightforward – in all the scenario variations,

there is no need to consider a bonus with restrictions because, as demonstrated later,

the optimal b in these scenarios would be zero. For the other scenarios, we first need

to determine the b region that can make a specific scenario possible; only then we can

ascertain the optimal b. Recall that we require b≤ rf and hence b < rv/δ.

Let bi, i=NV,NF,NB, denote the smallest b that enables achieving Scenario i. Specif-

ically,

• The smallest b that enables achieving Scenario NV is

bNV = θfµ
−1−R+T. (23)

• The smallest b that enables achieving Scenario NF is

bNF = 1
δ

(
θvΦ

−1(µ)+ δθf [µ−Φ(µ)]−1−R+ δT
)
, (24)

where Φ(µ) is defined in (19).
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• The smallest b that enables achieving Scenario NB is

bNB =

∞, if µ≤ λ+ θv [(1− δ)R]−1 ,

T −R+ θf
[
µ−λ− θv [(1− δ)R]−1]−1

, otherwise.
(25)

Note that bNV , bNF and bNB function as the lower bound on b when studying the optimal

bonus for a specific scenario. Lemma 1 determines a global upper bound for the optimal

bonus b.

Lemma 1. The optimal bonus b∗ must satisfy b∗ ≤ b̄ where

b̄=

∞, if µ≤ (1+ δ)λ+ θv [(1− δ)R]−1 ,

T −R+ θf
[
µ− (1+ δ)λ− θv [(1− δ)R]−1]−1

, otherwise.
(26)

In other words, b̄ is the smallest b that enables the system to perform as a “large”

system, as defined in Definition 1. In particular, when b hits b̄, the system is able to attract

all patients under the optimal capacity allocation. Therefore, there is no need to consider

b > b̄.

After characterizing the feasible region of b, we are now ready to analyze the optimal b

in each scenario described in Corollary 2. Proposition 4 summarizes the results.

Proposition 4. The optimal bonus for an in-person visit for each scenario is

• Any PURE Scenario: bPURE∗ = 0.

• The NV Scenario:

bNV ∗ = argmax
b∈[b+NV , rf ]

(rf − b)min
{
µ− θf [R−T + b]−1 , λ

}
. (27)

In particular, when [b+NV , rf ] ̸= ∅,

bNV ∗ =min

{
max

{
b+NV ,

√
θf(R−T + rf)µ−1−R+T

}
, rf , b̄NV

}
,

where b̄NV =∞ if λ≥ µ; otherwise, b̄NV = (θf [µ−λ]−1−R+T )+.

• The NF Scenario:

bNF∗ = argmax
b∈[b+NF , min{rv/δ, b̄}]

(rv − δb)λNF
v , (28)

where λNF
v is defined in (21). A closed-form expression for bNF∗ is developed in Appendix

A under an additional technical assumption.
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• The NB Scenario:

bNB∗ = argmax
b∈[b+NB , min{rf , rv/δ, b̄}]

(rf − b)λ+ [rv − rf +(1− δ)b]λNB
v , (29)

where λNB
v is defined in (22). In particular, when [b+NB, min{rf , rv/δ, b̄}] ̸= ∅:

bNB∗ =

b+NB or min{rf , rv/δ, b̄}, if rv − rf − (1− δ)(R−T )≤ 0

min{max{b+NB, b
NB#}, rf , rv/δ, b̄}, otherwise,

where

bNB# =

∞, if (1− δ)(µ−λ)− δλ− θv/R≥ 0√
θf (rv−rf−(1−δ)(R−T ))

−(1−δ)(µ−λ)+δλ+θv/R
−R+T, otherwise.

After characterizing the optimal bonus for each scenario, we identify the one with the

largest expected net reward as the global optimal bonus.

The following analysis narrows the options for the optimal scenario under a given total

service capacity µ. Specifically, we prescribe what scenario as defined in Corollary 2 and

Proposition 4 can be optimal depending the size of the system, i.e., µ. We start by defining a

few useful thresholds for µ. Let µ
i
, i=NV,NF,NB, denote the smallest capacity required

to assure Scenario i. Specifically,

• The smallest capacity required to assure Scenario NV is defined as

µ
NV

= θf [R−T + rf ]
−1 .

• The smallest capacity required to assure Scenario NF , µ
NF

is achieved by solving the

following equation for µ:

R− δ(T − rv/δ)− θvΦ
−1(µ)− δθf [µ−Φ(µ)]−1 = 0,

where Φ(µ) is defined in (19).

• The smallest capacity required to assure Scenario NB:

µ
NB

= λ+ θf
[
R−T +min{rf , rvδ−1}

]−1
+ θv [(1− δ)R]−1 .

We also define

µ̄= (1+ δ)λ+ θf [R−T ]−1+ θv [(1− δ)R]−1 .

When µ≥ µ̄, the provider is able to achieve the PURE − V and PURE −F scenarios

with b= 0. In other words, µ̄ is a bonus-consideration threshold.

We are now ready for Proposition 5, which establishes the optimal scenario for each µ.
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Proposition 5. The optimal scenario for a given service capacity µ is:

1. When µ≤min{µ
NV

, µ
NF

}, Scenario PURE−B is optimal.

2. When min{µ
NV

, µ
NF

}<µ<max{µ
NV

, µ
NF

}:
• If µ

NV
<µ

NF
, Scenario NF is optimal.

• If µ
NV

>µ
NF

, Scenario NV is optimal.

3. When max{µ
NV

, µ
NF

} ≤ µ< µ
NB

, one of the following two scenarios is optimal: NV

or NF .

4. When µ
NB

≤ µ< µ̄, one of the following three scenarios is optimal: NV , NF or NB.

5. When µ≥ µ̄, one of the following two scenarios is optimal: PURE−F or PURE−V .

Note that the optimal bonus is zero in all the PURE scenarios. That is, the bonus is effec-

tive only when the system is neither too small nor too large, i.e., when min{µ
NV

, µ
NF

}<
µ< µ̄. Particularly, if rf ≥ rv, we can arrive at Corollary 3:

Corollary 3. If rf ≥ rv, b
∗ = 0 when µ≥ λ+ θf [R−T ]−1.

5.3. The Incentive’s Impact on the Access Rate

The adoption of telemedicine maintained and improved access to care during the pan-

demic. With the pandemic potentially drawing to a close, providers are starting to reengage

patients in face-to-face visits. Providers can offer a bonus for in-person visits to increase

their revenue. The impact of the bonus on patient access to care, however, is not clear.

In our model, patient access to care is operationalized by the total effective arrival rate of

patients who access the healthcare service (and do not balk); specifically, λ∗
f + λ∗

v, where

λ∗
f and λ∗

v are the effective arrival rates in equilibrium under the provider’s optimal joint

decision b∗ and (µ∗
f , µ

∗
v). If such a bonus, which increases the provider’s revenue, decreases

the total access rate, then its adoption deserves caution.

Proposition 6 identifies the sufficient conditions that assure that the total access rate

will not decrease when utilizing a bonus.

Proposition 6. Let λ∗
f(b) and λ∗

v(b) denote the effective arrival rates in equilibrium

under bonus b and the corresponding optimal capacity allocation (µ∗
f(b), µ

∗
v(b)). Let b∗

denote the optimal bonus that achieves maximum revenue. Fixing all model parameters,

the total access rate will not decrease when utilizing a bonus (i,e, λ∗
f(b

∗)+λ∗
v(b

∗)≥ λ∗
f(0)+

λ∗
v(0)), if µ> θf [R−T ]−1+ θv [(1− δ)R]−1 and

rv
rf

≤min

{
1, (1+ δ)

(
µ− θf [R−T ]−1)[µ−

(√
δθf +

√
θv

)2

[R− δT ]−1

]−1
}

(30)



27

or
rv
rf

≥ (1+ δ)
(
µ− θf [R−T ]−1) [µ− θf [R−T ]−1− θv [(1− δ)R]−1]−1

> 1. (31)

Per Proposition 6, we are interested in the situation where the total service capacity is

not too small. When the ratio between rv and rf is small or large enough, the total access

rate will not decrease when adopting the optimal bonus. To see this, let us consider the

case where rv/rf is small enough, i.e., (30) holds. In this case, the face-to-face channel is

preferable. Thus, the provider will tend not to utilize the virtual channel and we will have

λ∗
v(0) = 0. After utilizing the optimal bonus, the provider achieves higher revenue, which

implies a larger access rate because rf ≥ rv. More specifically, we note that rfλ
∗
f(b

∗) +

rfλ
∗
v(b

∗)≥ rfλ
∗
f(b

∗) + rvλ
∗
v(b

∗)≥ rfλ
∗
f(0). A similar argument can explain why when rv/rf

is large enough, the total access rate will not decrease when the optimal bonus is utilized.

Figure 5 plots how arrival rates in equilibrium under the provider’s optimal decision

change with the total service capacity µ with and without adopting the bonus, for a given

set of model parameters. Specifically, Scenario A in Figure 5 (rv/rf = 0.75 and δ = 0.2)

demonstrates the case where the bonus does not hurt the total access rate. We observe that

when utilizing a bonus, the arrival rate curve shifts to the left. That is, what the bonus

effectively does is to increase the system’s capacity, which allows it to attract more patients

and generate higher revenue. Note that when µ is large, the bonus effect diminishes since

systems with large capacities do not need a bonus to attract all patients. The provider’s

increased revenue, however, does not always go hand in hand with increased social welfare.

We summarize the cases where the total access rate may decrease when utilizing the optimal

bonus:

1. When rv ≥ rf : λ
∗
f(0)> 0, λ∗

f(b
∗) = 0 and λ∗

v(b
∗)<λ.

2. When rf ≥ rv: λ
∗
v(0)> 0, λ∗

v(b
∗) = 0 and λ∗

f(b
∗)<λ.

In these two cases, patient utility increases with the bonus; consequently, the provider can

increase their revenue by attracting fewer patients to the more “profitable” service channel,

which generates a higher revenue.

Scenario B in Figure 5 (rv/rf = 0.75 and δ = 0.01) illustrates an example where the

access rate actually decreases when the provider adopts the optimal bonus. When µ≈ 3–

4, the equilibrium without a bonus is in Region BV , whereas with a bonus, it shifts to

Region BF , meaning that the provider opts to close the virtual channel and open the

face-to-face channel only because the latter becomes more appealing to patients with a
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Figure 5 Access rate comparison as a function of µ – with and without a bonus for in-person visits.
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bonus. The provider can actually achieve higher revenue with fewer patient visits through

the face-to-face channel – which, in turn, hurts the total access rate.

To conclude, if the payment ratio between two channels is significant, the social welfare,

captured by total patient access rate, will not be hurt when the revenue-chasing provider

offers a bonus. Otherwise, the bonus needs to be used with caution, especially when the

optimal system design that utilizes the bonus shifts to the channel with a higher payment

rate and not all patients can be served, i.e., there is balking.

6. Discussion and Concluding Remarks

Motivated by the rise of telemedicine in healthcare practice, we study an outpatient care

provider who can serve patients through a face-to-face channel and/or a virtual channel.

The virtual channel can reduce the patient’s burden and associated cost involved in physical
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travel. It cannot, however, resolve all patient care needs and, thus, a supplementary in-

person visit may be required. A revenue-driven provider has two operational levers to

influence patients’ strategic choices – allocating capacity between the two service channels

and providing incentives for in-person visits. We develop a stylized queueing model to

study patients’ choices and the provider’s optimal decisions.

The capacity coordination between the two channels needs to be carefully balanced.

Increasing offline capacity can attract more patients to the face-to-face channel, whereas

increasing online capacity may not attract more patients to the virtual channel because

more offline capacity may be needed to support supplementary in-person visits. Despite

the growing popularity of telemedicine, offering online service may not be the best choice

for all providers. It turns out that the total service capacity available to the provider plays

a pivotal role in how the capacity should be allocated between the two channels. The

provider with small or large capacity is better off focusing on one channel to achieve the

highest revenue; sometimes focusing on the in-person channel can be the right choice. In

contrast, the medium-sized provider may need to run both channels simultaneously.

The incentive for in-person visits improves patient utilities vis-à-vis channels and can

serve as a useful lever to attract in-patient visits (and boost revenues). For the provider,

whether to initiate the incentive also depends on the available service capacity. Providers

with a small- or large-sized service capacity have no need to use incentives, but a provider

with medium-sized capacity may benefit from it.

Our analysis highlights the impact in-person incentives can have on patient access to

care. In some cases, using such incentives, the provider can achieve higher revenue by

attracting fewer patients to the service channel where compensation is higher – leading

to a decrease in total access rate. Nevertheless, when the payment gap between the two

channels is large enough, the increased patient utilities due to in-person incentives will

help the provider attract more visits, and thus both the provider’s revenue and the total

access rate will increase. To put this discussion in the context of a concrete reimbursement

regime, consider a fee-for-service model. Recall that rf = rfeef and rv = rfeev +δrfeef in Remark

1. Condition (30) implies that rfeev ≤ (1− δ)rfeef , meaning that if the reimbursement for a

single and sole virtual visit is sufficiently small than that for in-person visit, the adoption

of in-person incentives would not hurt overall patient access to care. This implication

supports the ongoing policy discussion that advocates payment equity rather than parity

for telemedicine (Shachar et al. 2020). In the post-pandemic era with more providers likely
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to invest in efforts to attract in-patient visits, proper financial incentives by the payer can

be useful to ensure patient access to care is not negatively affected.

There are several interesting directions for future research. First, from the operational

perspective, a different operational lever – patient prioritization – may be considered to

increase revenue and social welfare. The prioritization might drive patients to choose one

channel over the other and it would be interesting to study the conditions under which it

is beneficial to do so. Another possible direction is to consider a setting where returning

patients are served in a separate channel with dedicated capacity and to study the optimal

design of such systems. Lastly, although we interpret some of our research findings through

the lens of reimbursement policy, the design of reimbursement policies is not the focus of

this work and would be a fruitful direction to explore in the future.
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Online Appendix

Appendix A: A Closed-Form Expression for bNF∗

The optimal bonus for Scenario NF can be expressed in a closed form by making the following technical

assumption on the utility functions. The assumption restricts the return probability δ from being too large.

That is aligned with the practical return probability, which is estimated to be 6–20% (Yamamoto 2014,

Uscher-Pines et al. 2016, Shi et al. 2018).

Assumption A.1. The following relation holds

δ(θf − θv)+ (1− δ)
√

δθfθv

R− δT
<

θf
R−T

− δθv
(1− δ)R

.

Proposition A.1. Under Assumption A.1, when [(bNF )
+, min{rv./δ, b̄}] ̸= ∅,

bNF∗ =min
{
max

{
bNF#, (b)+

}
, rv/δ, b̄

}
,

where

bNF# =

{
b1NF , if b1NF ≤ b0

b2NF , otherwise.

Here b0 solves
δ(θf − θv)+ (1− δ)

√
δθfθv

R− δT + δb0
=

θf
R−T + b0

− δθv
(1− δ)R

.

b1NF and b2NF are the optimal solutions to the two cases of (rv − δb)λNF
v (b). Specifically,

b1NF =min

{
(
√

δθf +
√
θv)

√
R− δT + rv

δ
√
µ

− R− δT

δ
, b̄1NF

}
,

where

b̄1NF =

∞, if λ≥ µ

1+δ

(
√

δθf+
√
θv)

2

δ(µ−(1+δ)λ)
− R−δT

δ
, otherwise;

b2NF =min

{√
θf (δR− δT + rv)

δµ− δθv
(1−δ)R

−R+T, b̄2NF

}
,

where

b̄2NF =

{
∞, if λ≥ µ

1+δ
− θv

(1+δ)(1−δ)R
θf

µ−(1+δ)λ− θv
(1−δ)R

−R+T, otherwise.
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Appendix B: Proofs of Analytical Results

Proof of Theorem 1: We conduct the analysis for each region separately:

Region B: Since
θv
µv

+
δθf
µf

≥R− δT and µf ≤
θf

R−T
,

we get that Uf (0,0) ≤ 0 and Uv(0,0) ≤ 0 and therefore, there exists a unique equilibrium such that

λf = λv = 0.

Region V : Since
θv

µv −λ
− (1− δ)θf

µf − δλ
≤ T − δT,

θv
µv −λ

+
δθf

µf − δλ
≤R− δT,

µf ≥ δλ+
δθf

R− δT
, and µv ≥ λ+

θv
R− δT

,

we get that Uf (0, λ)≤ Uv(0, λ) and Uv(0, λ)≥ 0 and therefore, there exists a unique equilibrium such that

λf = 0 and λv = λ.

Region F : Since

µf ≥ λ+
θf

R−T
and

θv
µv

− (1− δ)θf
µf −λ

≥ T − δT,

we get that Uf (λ,0)≥ Uv(λ,0) and Uf (λ,0)≥ 0 and therefore, there exists a unique equilibrium such that

λf = λ and λv = 0.

Region BV F : The equality Uv(λf , λv) =Uf (λf , λv) = 0 yields the following conditions:

λv = µv −
θv

R− δR
and λf + δλv = µf −

θf
R−T

.

The constraints of Region BV F :

µv ≥
θv

(1− δ)R
, µf − δµv ≥

θf
R−T

− δθv
(1− δ)R

, µf +(1− δ)µv ≤ λ+
θf

R−T
+

θv
R
,

lead to λv ≥ 0, λf ≥ 0 and λv +λf ≤ λ. Thus, there exists a unique equilibrium such that λv +λf ≤ λ.

Region BF : The fact that Uf (λf ,0) = 0 yields the following condition:

λf =min

{
λ,µf −

θf
R−T

}
.

The constraints of Region BF :

θf
R−T

≤ µf ≤ λ+
θf

R−T
, and µv ≤

θv
(1− δ)R

lead to 0 ≤ λf ≤ λ and Uv(λf ,0) ≤ 0. Thus, there exists a unique equilibrium such that 0 ≤ λf ≤ λ and

λv = 0.

Region BV : The fact that Uv(0, λv) = 0 yields the following conditions:

R− δT − θv
µv −λv

− δθf
µf − δλv

= 0, (B.1)
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µv −λv > 0 and µv − δλv > 0.

Next, we show that

1) There is only one λv which solves (B.1) and satisfies µf − δλv > 0 and µv −λv > 0.

2) With the constraints of Region BV , we must have 0≤ λv ≤ λ and Uf (0, λv)≤ 0.

Thus, there exists a unique equilibrium such that 0≤ λv ≤ λ and λf = 0.

We start with proving 1): There is only one λv which solves (B.1) and satisfies µf −δλv > 0 and µv−λv > 0.

Specifically,

λv =
B−

√
D2 +4δ2θfθv

2A
, (B.2)

where

A= (R− δT )δ, B= (R− δT )(µf + δµv)− δ(θf + θv),

C = (R− δT )µfµv − θvµf − δθfµv, D= (R− δT )(µf − δµv)− δ(θf − θv).

Let us rewrite (B.1) as

(R− δT )δλ2
v − [(R− δT )(µf + δµv)− δ(θf + θv)]λv + [(R− δT )µfµv − θvµf − δθfµv] = 0,

or alternatively, Aλ2
v −Bλ+ C = 0. Note that

B2 − 4AC = [(R− δT )(µf − δµv)− δ(θf − θv)]
2 +4δ2θfθv =D2 +4δ2θfθv ≥ 0.

Then, (B.1) has two possible solutions:

λBV.1
v =

B+
√

D2 +4δ2θfθv

2A
and λBV.2

v =
B−

√
D2 +4δ2θfθv

2A
.

There are two cases for D:

• Case 1: D> 0

—If λv = λBV.1
v ,

λBV.1
v >

B+D
2A

=
(R− δT )µf − δθf

(R− δT )δ
.

Then, we have µf − δλBV.1
v <

δθf

R−δT
, which contradicts with either (B.1) or µf − δλv > 0.

—If λv = λBV.2
v ,

λBV.2
v <

B−D
2A

=
(R− δT )µv − θv

(R− δT )
.

Then, we have µv − λBV.2
v > θv

R−δT
> 0, and λBV.2

v <
µf

δ
(since D > 0), which validates (B.1), µv > λv

and µf − δλv > 0.

• Case 2: D≤ 0

—If λv = λBV.1
v ,

λBV.1
v >

B−D
2A

=
(R− δT )µv − θv

(R− δT )
.

Then, we have µv −λBV.1
v < θv

R−δT
, which contradicts with (B.1) or λv <µv.

—If λv = λBV.2
v ,

λBV.2
v <

B+D
2A

=
(R− δT )µf − δθf

(R− δT )δ
.
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Then, we have µf − δλBV.2
v >

δθf

R−δT
> 0, and λBV.2

v <µv (by D≤ 0), which validates (B.1), µv >λv and

µf − δλv > 0.

In sum, λv = λBV.2
v is the only solution which solves (B.1) and satisfies µf − δλv > 0 and µv −λv > 0.

Next, we move on to proving 2): With the constraints of Region BV , we must have 0 ≤ λv ≤ λ and

Uf (0, λv)≤ 0; specifically, we prove the following:

2.1) λv ≥ 0: Recall the constraints of Region BV :

θv
µv

+
δθf
µf

≤R− δT, µf − δµv ≤
θf

R−T
− δθv

(1− δ)R
,

θv
µv −λ

+
δθf

µf − δλ
≥R− δT for µv >λ and µf > δλ.

Then we have A> 0, B> 0 and C ≥ 0. Since B2 − 4AC ≥ 0, then we have B−
√
B2 − 4AC ≥ 0. Thus λv ≥ 0.

2.2) λv ≤ λ: If µv ≤ λ or µf ≤ δλ, then λv <λ since µv >λv and µf > δλv.

If µv >λ and µf > δλ, by (B.1) and the constraint

θv
µv −λ

+
δθf

µf − δλ
≥R− δT for µv >λ and µf > δλ,

we must have λv ≤ λ.

2.3) Uf(0, λv)≤ 0: By (B.1) and

µf − δµv ≤
θf

R−T
− δθv

(1− δ)R
,

we must have Uf (0, λv)≤ 0.

Region V F : The fact that λv +λf = λ and Uf (λf , λv) =Uv(λf , λv) yield the following conditions

θv
µv −λv

− (1− δ)θf
µf −λ+(1− δ)λv

= (1− δ)T, (B.3)

λ−µf

1− δ
< λv <µv.

Recall the constraints of Region V F :

θv
µv

− (1− δ)θf
µf −λ

≤ (1− δ)T for µf >λ,

θv
µv −λ

− (1− δ)θf
µf − δλ

≥ (1− δ)T for µv >λ,

µf +(1− δ)µv ≥ λ+
θf

R−T
+

θv
R
, and

µf ≥ δλ+
θf

R−T
.

Since the left-hand side of (B.3) is increasing in λv when (λ − µf )/(1 − δ) < λv < µv. By the first two

constraints of Region V F , there must be a unique λv such that 0≤ λv ≤ λ solves (B.3). By the third constraint

of Region V F , it can be verified that Uv(λ− λv, λv)≥ 0. Thus, there exists a unique equilibrium such that

λf +λv = λ. Specifically, solving (B.3) gives

λv =
−B̃+

√
D̃2 +4θfθv

2Ã
, (B.4)
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where

Ã= (1− δ)T, B̃= (θf + θv)+T (µf −λ− (1− δ)µv),

C̃ =
θv(µf −λ)

(1− δ)
−Tµv(µf −λ)− θfµv, and D̃= (θf − θv)+T (µf −λ+(1− δ)µv). Q.E.D.

Proof of Proposition 1: Recall that in this region, 0≤ λf + λv ≤ λ. The provider’s objective function is

to maximize rfλf + [(1− δ)rv + δrv,f ]λv. Since in this region we have,

λv = µv −
θv

(1− δ)R
, and λf = µf − δµv −

θf
R−T

+
θv

(1− δ)R
,

the objective function can be rewritten as

rf

(
µf − δµv −

θf
R−T

+
θv

(1− δ)R

)
+ [(1− δ)rv + δrv,f ]

(
µ−µf −

θv
(1− δ)R

)
,

which by substituting µf = µ−µv and removing the constants is equivalent to

µf ((1+ δ)rf − (1− δ)rv − δrv,f ) .

The healthcare provider’s problem is therefore,

max
µf

Π(µf ) = µf ((1+ δ)rf − (1− δ)rv − δrv,f )

subject to

µf ≤ µ− θv
(1− δ)R

;

µf ≥
δ

1+ δ

(
µ+

θf
δ(R−T )

− θv
(1− δ)R

)
;

µf ≤
1

δ

(
λ+

θf
R−T

+
θv
R

−µ(1− δ)

)
;

θf
R−T

≤ µf ≤ λ+
θf

R−T
.

(B.5)

The optimal solution then depends on the sign of the objective function and the boundaries of µf in (B.5).

Q.E.D.

Proof of Proposition 2: Before characterizing the optimal capacity allocation in Region BV , we first

provide an auxiliary result. Lemma B.1 proves that the unique effective arrival rate to the virtual channel

(which is defined in (B.2) and here we denote it as λBV
v ) is a unimodal function in µv, which is maximized

at the unique value µv = µ̃BV
v .

Lemma B.1. Given (µf , µv) which satisfies (B.1) and (12)–(14), there exists a unique µ̃BV
v such that

λBV
v (µ−µv, µv) is increasing in µv when µv ≤ µ̃BV

v and λBV
v (µ−µv, µv) is decreasing in µv when µv ≥ µ̃BV

v .

In Proposition 2, the results are straightforward when µ≥ λ(1+ δ)+ θv
(1−δ)R

+
θf

R−T
.

When µ< λ(1+ δ)+ θv
(1−δ)R

+
θf

R−T
, we observe that the optimal solution is µ̃BV

v without constraints (12)–

(14) (it directly follows from Lemma B.1). Next, we have to regularize µBV ∗
v to make (12)–(14) valid. Recall

the constraints (12)–(14):

θv
µv

+
δθf
µf

≤R− δT, µf − δµv ≤
θf

R−T
− δθv

(1− δ)R
,
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θv
µv −λ

+
δθf

µf − δλ
≥R− δT for µv >λ and µf > δλ.

The first condition must hold (as the solution makes it binding), thus no revenue is generated. If the second

constraint is not satisfied, the boundary solution would be the optimal one: 1
1+δ

(µ− θf

R−T
+ δθv

(1−δ)R
). If the

third constraint is not satisfied, Region V dominates Region BV . In this case, we require that λBV ∗
v ≤ λ.

Q.E.D.

Proof of Lemma B.1: Recall that given (µf , µv) which satisfies (B.1) and (12)–(14), we have

λBV
v =

B−
√
D2 +4δ2θfθv

2A
.

By replacing µf with µ−µv, we have

∂B
∂µv

=−(R− δT )(1− δ)< 0, and
∂D
∂µv

=−(R− δT )(1+ δ)< 0.

Therefore, when D< 0, λBV
v is decreasing in µv. Note that A is independent of µv.

When D≥ 0,
∂λBV

v

∂µv

=−−(1− δ)

2δ
+

(1+ δ)D
2δ
√

D2 +4δ2θfθv
.

Since D≥ 0, then
∂λBV

v

∂µv
is increasing in D. And when D= 0,

∂λBV
v

∂µv
=−−(1−δ)

2δ
< 0. Let D̄ solves

∂λBV
v

∂µv
= 0,

we must have D̄ > 0. So when 0≤D< D̄,
∂λBV

v

∂µv
< 0; and when D> D̄,

∂λBV
v

∂µv
> 0.

When µv = µ̃BV
v = µ

1+δ
− δ(θf−θv)+(1−δ)

√
δθf θv

(1+δ)(R−δT )
, D = D̄. Since D is decreasing in µv, we can conclude that

when µv ≤ µ̃BV
v , λBV

v is increasing in µv; when µv ≥ µ̃BV
v , λBV

v is decreasing in µv. Q.E.D.

Proof of Proposition 3: Before characterizing the optimal capacity allocation in Region V F , we first

provide an auxiliary result. Lemma B.2 proves that the unique effective arrival rate to the virtual channel

(which is defined in (B.4) and here we denote it as λV F
v ) is increasing in the capacity allocated to this channel.

Lemma B.2. Given (µf , µv) which satisfies (B.3) and (15)–(18), λV F
v is increasing in µv.

Since λV F
v is increasing in µv and the objective function is monotone in λV F

v , the optimal solution must

be in the boundaries if rv ̸= rf . Q.E.D.

Proof of Lemma B.2: Recall that given (µf , µv) which satisfies (B.3) and (15)–(18), we have

λV F
v =

−B̃+
√
D̃2 +4θfθv

2Ã
.

By replacing µf with µ−µv, we have

∂B̃
∂µv

=−(2− δ)T < 0, and
∂D̃
∂µv

=−δT < 0.

Then,

∂(−B̃+
√

D̃2 +4θfθv)

∂µv

= (2− δ)T − δT D̃√
D2 +4θfθv

,

which is decreasing in D̃. When D̃ → ∞,
∂(−B̃+

√
D̃2+4θf θv)

∂µv
→ 2(1 − δ)T > 0. So λV F

v is increasing in µv.

Q.E.D.
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Proof of Theorem 2: As illustrated in Figure 3, each system size includes several equilibrium regions.

The optimal capacity allocation for each size is the one that yields the greatest profit among the regions it

includes:

1. Extreme Small systems include Regions B and BV if
θf

R−T
≤ µBV , thus the optimal capacity allo-

cation must be in Region BV ; and if
θf

R−T
>µBV , it includes Regions B and BF , thus the optimal capacity

allocation must be in Region BF .

2. Small systems include Regions B, BV , BV F , BF and F . Region B is dominated by Regions BV

and BF . From Proposition 1 we know that the optimal solution in Region BV F is on the boundaries (in

this case, either on the boundary with BV or on the boundary with BF ). When Region F is applicable

(λ≤ µ− θf

R−T
), it dominates Region BF . The optimal value function is rfλ in Region F , and rf

(
µ− θf

R−T

)
in

Region BF . In both cases the optimal allocation is µf = µ and µv = 0. The optimal value function in Regions

F and BF is, therefore, rf

(
min{λ,µ− θf

R−T
}
)
. Comparing the latter with the optimal value function in

Region BV yields the condition as stated.

3. Medium systems include Regions B, BV , BV F , V F and F . Region B is dominated by Region BV .

From Proposition 1 we know that the optimal solution in Region BV F is dominated by either BV or V F .

Moreover, Region F is dominated by V F (as an extreme case in V F ). Therefore, it suffices to compare the

optimal value function in Regions BV and V F , as stated.

4. Large systems include Regions B, BV , V , V F and F . Region B is dominated by Region BV and

Regions BV and V F are dominated by Region V (as an extreme case in V F ). Therefore, the optimal region

is V F , as stated. Since the solution of Region V F is a boundary one, it will utilize either the face-to-face

channel or the virtual channel while supporting returning patients.

Q.E.D.

Proof of Corollary 1: The results follow Theorem 1 if we replace T by T − b. Q.E.D.

Proof of Corollary 2: First let us replace T by T − b in the results of Theorem 2. Then, the optimal

capacity allocation must lead to the six scenarios presented in the Corollary statement. The results in each

scenario are straightforward. It is worth noting that
δ(θf−θv)+(1−δ)

√
δθf θv

R−δT+δb
≤ θf

R−T+b
− δθv

(1−δ)R
is equivalent to

the second condition in Proposition 2 (i.e., (µ− µ̃BV
v , µ̃BV

v )∈Region BV ). Q.E.D.

Proof of Lemma 1: When µ≥ (1+ δ)λ+ θv
R(1−δ)

+
θf

R−T+b
, the system performs as large one. b̄ is the one

to make this condition hold. Q.E.D.

Proof of Proposition 4:

• The PURE Scenario: It is straightforward that setting no bonus is optimal.

• Scenario NV : It can be verified that (rf −b)
(
µ− θf

R−T+b

)
is a concave function of b and the first order

condition lead to the solution
√

θf (R−T+rf )

µ
−R+T . It is worth noting that b̄NV is an upper bound for the

optimal b. Then, it is straightforward that bNV ∗ is limited by its upper and lower bounds.



8

• Scenario NF : The results are straightforward.

• Scenario NB: The first order derivative of the objective function is

(1− δ)(µ−λ)− δλ− θv
R

+
θf (rv − rf − (1− δ)(R−T ))

(R−T + b)2
.

—If rv − rf − (1− δ)(R− T )≤ 0, the objective function is convex, so the optimal solution must be on

the boundary (the first case of bNB∗).

—If rv − rf − (1− δ)(R−T )> 0 and (1− δ)(µ−λ)− δλ− θv
R
≥ 0, the objective function is increasing in

b, so the optimal solution is to set b as large as possible (the first case of bNB#).

—If rv −rf − (1−δ)(R−T )> 0 and (1−δ)(µ−λ)−δλ− θv
R
< 0, the second order derivative is negative;

the first order condition then leads to the second case of bNB#. The second case for bNB∗ is restricted by its

upper and lower bounds. Q.E.D.

Proof of Proposition 5: Follows directly from the definition of the thresholds for µ. Q.E.D.

Proof of Corollary 3: When rf ≥ rf and µ ≥ λ+
θf

R−T
, the system is able to achieve the highest reim-

bursement rfλ. Q.E.D.

Proof of Proposition 6:

1. When rv ≤ rf : If µ≥ λ+ θf/(R− T ), the PURE −F Scenario generates the largest reimbursement

rfλ with b∗ = 0. We, therefore, need to consider only the case where µ < λ + θf/(R − T ). In this Case,

the reimbursement in Scenario NV is rf (µ− θf

R−T
), and rv

(
µ

1+δ
− (

√
δθf+

√
θv)

2

(1+δ)(R−δT )

)
is the upper bound of the

reimbursement in Scenario NF . Since (30) holds, Scenario NF is dominated by Scenario NV without a

bonus. Moreover, since rv ≤ rf , Scenario NB is dominated by Scenario NV . So without a bonus, the optimal

solution must lead to Scenario NV , PURE −B, or PURE − V . The only possible case for the access rate

to decrease is when the optimal solution appears in Scenario NV without a bonus whereas Scenario NF is

the optimal solution with a bonus. In this case, however, since rv ≤ rf , the resulting λ∗
v must be greater than

the original access rate without a bonus.

2. When rv ≥ (1+ δ)rf : Per Proposition 3, Scenario NB is dominated by Scenario NF for

any b. Note that rf (µ− θf/(R−T )) is the upper bound for the revenue in Scenario NV , and

rv

(
µ

1+δ
− θf

(1+δ)(R−T )
− θv

(1+δ)(1−δ)R

)
is the lower bound for the revenue in Scenario NF . When condition (31)

holds, Scenario NV is dominated by Scenario NF without bonus. In this case, the optimal solution must

lead to Scenarios NF , PURE −B, or PURE − V . Clearly, it is possible to have a decreased access rate

when the optimal solution is in Scenario NF without a bonus, but it is in Scenario NV with a bonus. In

this case, since rf ≤ rv, the resulted λ∗
f must be greater than the original access rate. Q.E.D.

Proof of Proposition A.1: Note that the sign of

δ(θf − θv)+ (1− δ)
√

δθfθv

(R− δT + δb)

θf
R−T + b

+
δθv

(1− δ)R
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is as same as the sign of(
δ(θf − θv)+ (1− δ)

√
δθfθv

)
(R−T + b)− θf (R− δT + δb)+

δθv(R− δT + δb)(R−T + b)

(1− δ)R
, (B.6)

as R− δT > 0 and R−T + b > 0. It can be verified that (B.6) is a quadratic convex function of b. Therefore,

if Assumption A.1 holds, i.e.,

δ(θf − θv)+ (1− δ)
√

δθfθv

(R− δT )
<

θf
R−T

− δθv
(1− δ)R

,

then there exists a unique b0 ≥ 0, such that (B.6) equals to 0 when b= b0. In other words, under Assumption

A.1, there exists a unique b0 ≥ 0, such that

δ(θf − θv)+ (1− δ)
√

δθfθv

R− δT + δb0
=

θf
R−T + b0

− δθv
(1− δ)R

.

Thus, when b≤ b0, the optimal capacity allocation results in the first case of (21); when b > b0, however, the

optimal capacity allocation results in the second case of (21). We therefore have

λNF
v (b) =

min

{
λ, µ

1+δ
− (

√
δθf+

√
θv)

2

(1+δ)(R−δT+δb)

}
, if b≤ b0,

min
{
λ, µ

1+δ
− θf

(1+δ)(R−T+b)
− θv

(1+δ)(1−δ)R

}
, otherwise.

(B.7)

Note that both

(rv − δb)(
µ

1+ δ
−

(
√

δθf +
√
θv)

2

(1+ δ)(R− δT + δb)
), (B.8)

and

(rv − δb)
µ

1+ δ
− θf

(1+ δ)(R−T + b)
− θv

(1+ δ)(1− δ)R
(B.9)

are concave.

Furthermore, when [(bBV )
+, min{rv/δ, b̄}] ̸= ∅,

bNF∗ =min
{
max

{
bNF#, (bNF )

+
}
, rv/δ, b̄

}
,

where

bNF# =

{
b1NF , if b1NF ≤ b0

b2NF , otherwise.

Here, b1NF and b2NF are the optimal solutions to the two cases of (rv − δb)λNF
v (b). Specifically,

b1NF =min

{
(
√

δθf +
√
θv)

√
R− δT + rv

δ
√
µ

− R− δT

δ
, b̄1NF

}
,

where the first term in the minimum comes from taking the first order condition of (B.8), and

b̄1NF =

∞, if λ≥ µ

1+δ

(
√

δθf+
√
θv)

2

δ(µ−(1+δ)λ)
− R−δT

δ
, otherwise;

b2NF =min

{√
θf (δR− δT + rv)

δµ− δθv
(1−δ)R

−R+T, b̄2NF

}
,
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where the first term in the minimum comes from taking the first order condition for (B.9), and

b̄2NF =

{
∞, if λ≥ µ

1+δ
− θv

(1+δ)(1−δ)R
θf

µ−(1+δ)λ− θv
(1−δ)R

−R+T, otherwise.

We conclude the proof by showing that b1NF generates the highest revenue when b1NF ≤ b0, while otherwise,

b2NF generates the highest revenue; namely,

min

{
λ,

µ

1+ δ
−

(
√

δθf +
√
θv)

2

(1+ δ)(R− δT + δb)

}
≥min

{
λ,

µ

1+ δ
− θf

(1+ δ)(R−T + b)
− θv

(1+ δ)(1− δ)R

}
.

When b= b0, the inequality is binding. Q.E.D.
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