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The Covid-19 pandemic has profoundly boosted the use of hybrid healthcare settings, which orchestrate

face-to-face services together with virtual ones. The advantages of virtual healthcare services are clear: they

are less costly, less disruptive for patients who can receive the service in the comfort of their home, and reduce

patients’ exposure to illnesses prevalent in healthcare facilities. Nevertheless, there is evidence that patients

are likely to require a supplementary in-person service upon completion of their virtual service. Motivated by

such settings, we study a multi-service queueing system with face-to-face, virtual and supplementary service

channels. The service operator needs to allocate service capacity among the three classes and decide how to

prioritize the patients when a service provider becomes available. The strong dependency between virtual

and supplementary visits makes the problem challenging. Based on a fluid relaxation, we develop an index-

based policy, the R− cµ/θ rule (or the R rule in short), which in addition to the holding cost, service time,

abandonment rate and service reward, also carefully balances the return probability and associated penalty.

The theoretical results along with numerical experiments demonstrate the effectiveness of the proposed policy

and the importance of capacity coordination when managing hybrid service settings. Our work provides

insights on the trade-off between convenience and the value of care when offering virtual healthcare services.
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1. Introduction

The Covid-19 pandemic has dramatically affected healthcare worldwide, accelerating broad

acceptance of telemedicine and transforming the provision of medical care (Bokolo 2020,

Kadir 2020). Telemedicine refers to technologies that enable the provision of remote clinical

services via real-time communication between patients and healthcare providers, using

video conferencing and patient monitoring (Monaghesh and Hajizadeh 2020). Telemedicine

and virtual care can be integrated into the healthcare system to maximize the efficiency
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of healthcare delivery (Kadir 2020, Hur and Chang 2020). Indeed, telehealth adoption

has significantly increased across the 50 countries most affected by Covid-19 (Wong et al.

2021).

Telemedicine advantages include the reduction of contagion risk and emergency

room/clinic visits (Chauhan et al. 2020, Doshi et al. 2020). Virtual visits promote social dis-

tancing and help circumvent prolonged waiting times. Moreover, by minimizing in-person

visits, telehealth can help reduce spread of today’s virus and future ones, and protect med-

ical practitioners from infection (Hollander and Carr 2020). Clearly, healthcare provision

through telehealth will have a permanent role in traditional healthcare delivery long after

Covid-19 becomes endemic (Ahmed et al. 2020).

Despite the obvious advantages of virtual visits, when operating and designing such sys-

tems, one must be aware of their potential for providing low-value instead of quality care

(O’Reilly-Jacob et al. 2021). In this paper we focus on one important aspect of ensur-

ing that patients receive quality care, which has significant operational implications – the

requirement for a supplementary face-to-face visit. Specifically, there is evidence that vir-

tual visits are likely to lead to a follow-up in-person visit (Ashwood et al. 2017, Shi et al.

2018). This usually has to do with the fact that some medical examinations/procedures

cannot be executed remotely (McConnochie et al. 2015, Uscher-Pines et al. 2016). Indeed,

an empirical study from a large healthcare system in the United States revealed that e-

visits remove the gatekeepers between patients and specialist physicians and trigger a 6%

increase in in-person visits (Bavafa et al. 2018).

To ground our model, we consider the real-world case of an urgent care center or a

community clinic that patients visit only when they feel sick. An example of such a center,

mentioned in Çakıcı and Mills (2021), is Northwell Health, https://www.gohealthuc.

com/northwell, the largest healthcare provider in New York state. When patients seek

urgent care, they are offered the opportunity to book a telehealth visit instead of heading

to the clinic for an in-person visit. Then, they can meet with any available physician on

call. If they choose a telehealth visit and require a supplementary in-person visit, they

arrive at the clinic, and see one of the available physicians there.

To better understand the effect of these supplementary visits on system performance

and decision making, we study a hybrid healthcare system, which provides virtual and

https://www.gohealthuc.com/northwell
https://www.gohealthuc.com/northwell
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in-person visits. The first visit to the system can be either in person or virtual. In a face-

to-face visit, patients wait in a waiting room and are thus exposed to other illnesses. In a

virtual visit, patients wait in the comfort of their home; nevertheless, they might require

a supplementary in-person visit. We model the patients requiring a supplementary visit

as a different class of patients (i.e., the patient’s class switches when physically entering

the clinic). This is because the supplementary visit might have different characteristics in

terms of service times, holding costs and abandonment rates than the first (face-to-face or

virtual) visit. In particular, since some information has already been collected, the service

time of the supplementary visit might be shorter than a full in-person visit. The holding

cost and abandonment rate might be different as well, since the patient is now required to

wait a second time and, therefore, may be more agitated and less patient.

There are two basic questions that come to mind when considering such a hybrid setting.

First, there is a design question – how do we allocate capacity among the three types

of services? The second question is an operative one – how do we schedule/prioritize the

three classes or decide whom to admit when a physician becomes available? This paper

attempts to address these two questions by studying a multi-server queueing model with

three customer classes: face-to-face, virtual and supplementary. (We use the terms patients

and customers interchangeably.) In Section 5 we discuss two model extensions for more

classes and different supplementary classes for teletriage systems.

The optimal scheduling of multi-class queues has been studied extensively in the lit-

erature (See Section 1.1). The main take-way from these studies is the need to carefully

balance the holding cost and the service and abandonment rates. Our work captures an

additional feature in multi-class queueing systems: customer return and class transition

while returning. The analysis suggests that in addition to the holding cost, and the service

and abandonment rates, we also have to take into account the return probability and asso-

ciated penalty. How to balance these factors can be highly non-trivial. The optimality of the

cµ/θ rule, for example, is only achieved asymptotically (Atar et al. 2010). Moreover, solv-

ing the Markov Decision Process (MDP) exactly often leads to limited structural insights

and suffers from the curse of dimensionality especially in large systems (Papadimitriou and

Tsitsiklis 1999).

Using a fluid framework, we study the optimal scheduling and capacity allocation poli-

cies. Specifically, the strong dependency between the virtual and supplementary visits,
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requires an integrative approach. To this end, we develop an effective index-based policy,

the R− cµ/θ rule (or the R rule in short), which captures this dependency. We demon-

strate how important it is to consider the return probability and penalty when scheduling

and capacity allocating service systems with returns. In particular, using policies that

neglect the dependency between first- and second-time visitors can lead to unsatisfactory

performances.

Our main contributions can be summarized as follows:

� Modeling. We study a multi-server queuing model with reentrant customers that

have different characteristics than first-time visitors to the system. The main motivation

for the model is facilitating a hybrid healthcare setting that provides face-to-face, virtual

and supplementary in-person services. Nevertheless, the model is relevant to other service

systems such as technical support centers, in which some repairs must be handled through

an in-person service center. We provide two model extensions: the first includes multiple

classes for each channel, and the second refers to the virtual channel as a teletriage system

that classifies patients according to the supplementary service they require. We use a

deterministic fluid model to approximate the system dynamics and derive scheduling and

capacity allocation policies that shed light on the convenience versus low-value trade-off

of virtual healthcare services.

� The R rule. For maximizing the fluid long-run profit of a hybrid healthcare setting,

we introduce an index-based policy that incorporates the return probability and associated

penalty along with the holding cost, service time, abandonment rate and service completion

reward from each service channel. The R rule, which performs well in different parameter

regimes, utilizes the R index of each class together with an integrated index for virtual and

returning patients. We demonstrate that the R rule, which is optimal for the fluid problem,

performs well – very close to optimal – in the corresponding stochastic system. Moreover,

we show that our policy performs much better than other known policies that neglect the

dependency between classes, even under non-stationary arrival rates. The simplicity of the

policy together with its strong performance and the lack of other good policies for this

setting, make the policy appealing and implementable.

� Service capacity coordination. Our work underscores the need for an integrated

view of patients’ first and following (if any) visits. In terms of system design, we show the

importance of joint capacity allocation, in particular, for virtual and returning patients.
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This is done by carefully balancing the service allocation for these two classes, while incor-

porating the return probability and associated penalty. We identify the cases where this

coordination has the largest impact. In these cases, the superiority of the R rule is most

significant when compared to other benchmark policies.

The rest of the paper is organized as follows. This section is concluded with a brief

relevant literature review. In Section 2 we introduce our model and assumptions. In Section

3 we develop the R index rule and discuss its properties, optimality and implications in

terms of system design and scheduling. In Section 4 we provide numerical experiments for

the R index rule including a comparison to the optimal solution from the MDP solution,

the cµ/θ rule and the max-weight policies. This section also considers the transient profit-

maximization problem under non-stationary arrivals. In Section 5 we discuss two model

extensions: multiple supplementary services that consider the virtual channel as a teletriage

system, and a multiple class model. Section 6 offers concluding remarks and future research

directions.

1.1. Literature Review

This paper is related to two main bodies of literature. The first is the OR/OM literature

on virtual/e-visits in healthcare systems. The second includes scheduling and capacity

planning of queues with different customer classes.

Since the accommodation of virtual/e-visits in healthcare systems is a relatively new

practice, there are only a few OR/OM papers in this area. Rajan et al. (2019) studied the

impact of telehealth on the quality–speed trade-off for chronic patients. By considering an

M/M/1 queue with strategic behavior, the authors showed that telemedicine can contribute

to the specialists’ productivity and to overall social welfare. Nevertheless, some patients

that continue to use in-person visits may be worse off. In a recent study, Bavafa et al.

(2021) focused on the physician compensation scheme (pricing) of e-visits in a primary

care setting. The authors demonstrated that patients requiring intermediate healthcare

may improve or worsen when e-visits are introduced, and identified settings in which sys-

tem outcomes worsen under e-visits. Çakıcı and Mills (2021) recently studied the use of

teletriage, a telemedicine service that allows patients to consult about their health con-

dition. By analyzing an MDP to model patients’ choices under triage errors, the authors

find that for patients with high uncertainty regarding their health condition, teletriage can
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be beneficial in terms of cost outcomes. Nevertheless, due to the general overtriage rate,

adding teletriage may increase the ED arrival rate and produce a negative cost outcome.

In our paper, we focus on a different aspect of telemedicine, which is the supplementary

in-person visit and its effect on scheduling and capacity allocation decisions.

The scheduling of multiple customer classes in stochastic processing networks is a broad

literature area. Cox and Smith (1961) proved the optimality of a simple index-based policy,

known as the cµ rule for a single server queue with linear holding costs. Many gener-

alizations have been offered for the rule; their optimality, however, is mostly obtained

asymptotically (e.g., Van Mieghem 1995, Mandelbaum and Stolyar 2004, Huang et al.

2015).

In a multi-server system, Harrison and Zeevi (2004) and Atar et al. (2004) studied

the scheduling of multiple classes with customer abandonment under the critically loaded

regime. Atar et al. (2010) derived the asymptotic optimality of the cµ/θ rule for many-

server queues with abandonment under the many-server heavy traffic regime. More recently,

Long et al. (2020) suggested an extension of the rule to general queue length cost functions

and customer patience time distributions. Puha and Ward (2019) provided a tutorial on

scheduling policies of many-server queues with impatient customers under the overloaded

regime. Other recent extensions include scheduling of customers with different resource

requirements (Zychlinski et al. 2020, 2022) and scheduling of proactive services (Hu et al.

2022). The latter, as our current paper, is studied under the conventional heavy-traffic

regime.

In this work, we complement this literature body by studying the scheduling of new and

reentrant customers. This feature is relevant for hybrid healthcare settings as well as other

services that may require a supplementary in-person visit. We allow returning patients to

have different characteristics than the first-time visitor, and address the questions of how

to schedule and allocate capacity among the different service channels.

2. The Hybrid Queuing Model

We consider a Markovian N -server queuing model and three classes of visits: face-to-

face (f), virtual (v) and supplementary (s), as illustrated in Figure 1. The in-person and

virtual classes arrive to the system according to a time-homogeneous Poisson process with

rate λf and λv, respectively. Upon completion of a virtual visit, with probability ps, the
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patient will require a follow-up in-person visit. To allow returning patients to have different

characterizations than the face-to-face or virtual patients, and to support the decision of

how to schedule/prioritize the different classes, we consider returning patients to be a

separate class of patients. Service and patience times of each class are exponential with

rates µi and θi, i= f, v, s, respectively.

Figure 1 A hybrid system illustration with three patient classes: face-to-face (f), virtual (v) and patients

returning for a supplementary in-person visit (s).
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We assume that patients may return for an additional service at most once. If their ser-

vice requirements have not been filled after that, they permanently leave the system. In the

context of a hybrid emergency clinic, patients are usually referred to an ED if their health

requirements have not been met during the in-person visit. Moreover, patients arriving for

their virtual visit whose health condition is critical are referred to the ED. On the other

hand, patients arriving for their virtual visit who are mildly ill do not require a supple-

mentary in-person visit. Consequently, we assume that there is no significant difference

in terms of health criticality between first-time and second-time (following a virtual visit)

in-person patients. This allows us to focus on a profit/cost-effective metric.

Note that we refer to face-to-face patients as ones that do not reenter the system imme-

diately upon service completion. After a while, if such patients require service, we consider

them to be new arrivals.
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Let Xi(t) and Qi(t), i= f, v, s, denote the number of Class i customers in the system and

in the queue, respectively, at time t, t≥ 0. Moreover, we use the notation X(t) = (Xi(t), i=

f, v, s) and Q(t) = (Qi(t), i = f, v, s). Let Zi(t) denote the number of servers assigned to

Class i at time t; Z(t) = (Zi(t), i= f, v, s) are the decision variables. A scheduling policy π

determines the allocation of servers to customers. We consider Markovian non-anticipating

policies; that is, server allocations are made based on the current state (X;Q) only. Under

these scheduling policies, {(X(t);Q(t)) : t≥ 0} is a Markov process. Lastly, we also denote

by Γi(t), i = f, v, s, the cumulative number of virtual patients that have returned for a

supplementary service by time t.

Each completed service is associated with a profit of ri, i= f, v, s. To capture a variety of

reimbursement/pricing schemes, we do not impose any restrictions on these profits or their

relationship. Each class incurs a holding cost of hi, i= f, v, s, per patient per unit of time.

It makes sense to assume that the holding cost of a face-to-face visit is higher than that of

a virtual visit, due to the inconvenience and higher exposure to other illnesses prevalent

in clinics and waiting rooms. Nevertheless, to keep the analysis as general as possible, we

do not impose such a restriction.

Lastly, we incur an abandonment cost αi, i= f, v, s for each Class i patient that abandons

the queue while waiting, and a return cost γ ≥ 0 for each virtual patient that requires a

supplementary in-person service. The aggregated profit up to time T is, therefore,

E

[∫ T

0

[ ∑
i=f,v,s

[riµiZi(t)−hiQi(t)]− γpsµvZv(t)

]
dt−

∑
i=f,v,s

αiΓi(T )

]
, (1)

where under the Markovian modeling assumption,

E [Γi(T )] = θiE
[∫ T

0

Qi(t)dt

]
, i= f, v, s.

Equation (1) can then be rewritten as follows,

E

[∫ T

0

∑
i=f,v,s

[riµiZi(t)− (hi +αiθi)Qi(t)]− γpsµvZv(t)dt

]
.

For simplicity of notation and similar to Hu et al. (2022), we introduce the “generalized”

holding costs ci = hi +αiθi, i= f, v, s.
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Our goal is, therefore, to find a scheduling policy π that maximizes the total expected

long-run average profit; specifically:

max
π∈Ω

lim inf
T→∞

1

T
E

[∫ T

0

∑
i=f,v,s

[riµiZi(t)− ciQπ
i (t)]− γpsµvZv(t)dt

]
(2)

s.t.

I∑
i=f,v,s

Zi(t)≤N, t≥ 0;

0≤Zi(t)≤Xπ
i (t), i= f, v, s, t≥ 0,

where Ω denotes the set of admissible controls. Note that the superscript π in Xπ(t) and Qπ(t)

emphasizes the dependency of the processes on policy π.

The objective function includes an aggregation of the long-run profit from the three classes. In

particular, it includes the profit from each completed service minus the holding cost of the waiting

patients minus the return penalty γ for each returning patient.

The first constraint states that the total allocated number of servers cannot exceed the total

service capacity N . The second constraint implies that the number of servers allocated to Class i

cannot exceed the number of Class i customers.

This profit maximization problem is an MDP. The curse of dimensionality (Papadimitriou and

Tsitsiklis 1999) – a large (infinite) state-space and policy-space – makes it prohibitively hard to

solve and characterize the optimal scheduling policy. To gain structural insights into the optimal

scheduling policy and capacity allocation, we take a deterministic fluid approach. Fluid models are

known to provide good approximation of the first-order mean dynamics of stochastic systems, and

are thus useful for a variety of applications related to service operations management (Zychlinski

2022). Such models are usually derived as limits through the Functional Law of Large Numbers. In

this paper, we apply the conventional heavy traffic regime (Whitt 2002). In this regime, the arrival

rates and service rates are scaled up (this is equivalent to scaling up time), while the number of

servers is held fixed.

2.1. The Fluid Model

In the fluid model, deterministic continuous rates replace the stochastic processes. We use lowercase

xi, qi and zi, i= f, v, s, to denote the steady-state fluid content in the system, the queue length and

the service capacity assigned to Class i, respectively. The decision variables zi’s can be thought of

as the level of service capacity that is allocated in the long run to Class i. For a given capacity

allocation, zi, i= f, v, s, such that zf + zv + zs ≤N , and 0≤ zi ≤ xi, the system dynamics under

the fluid model are characterized by the following set of differential equations:
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q̇i(t) = λi−µizi(t)− θiqi(t), i= f, v; (first-time visitors)

q̇s(t) = psµvzv(t)−µszs(t)− θsqs(t); (second-time visitors)

qi(t), zi(t)≥ 0, i= f, v, s, t≥ 0.

(3)

The first equation for the first face-to-face or virtual visit describes the rate of change in the

corresponding queue length, which includes the arrival rate minus the departure rate. The latter

includes the service completion rate and the abandonment rate from the queue. The second equation

is for the supplementary in-person visit that may be needed after the virtual visit. Here, the arrival

rate is the departure rate from the virtual service, µvzv(t), multiplied by the return probability.

Note that the virtual service is the feeding source of the supplementary visit. That is, if no capacity

is allocated to the virtual service, no patients will require a supplementary visit.

The fluid analog for the long-run profit maximization problem is, therefore, the following infinite

dimensional linear program:

max
q,z

lim inf
T→∞

1

T

∫ T

0

[ ∑
i=f,v,s

[riµizi(t)− ciqi(t)]− γµvpszv(t)

]
dt

s.t. q̇i(t) = λi−µizi(t)− θiqi(t), i= f, v; (first-time visitors)

q̇s(t) = psµvzv(t)−µszs(t)− θsqs(t); (second-time visitors)∑
i=f,v,s

zi(t)≤N, t≥ 0;

qi(t), zi(t)≥ 0, i= f, v, s, t≥ 0,

(4)

where the system dynamics constraints are as in (3). In addition to reaching scheduling decisions

for the three classes, we also wish to derive the optimal capacity allocation for the three service

channels. We are therefore interested in finding the equilibrium point to which the fluid approxi-

mation converges. Theorems 1 and 2 allow us to rewrite the problem as a finite dimensional linear

program. Specifically, if the fluid approximation converges to an equilibrium point (q̄, z̄) as t→∞,

then maximizing the long-run average profit can be achieved by finding the optimal equilibrium

point:



Author: Managing Queues with Reentrant Customers
Article submitted to Stochastic Systems; manuscript no. MS- 11

max
q̄,z̄

∑
i=f,v,s

[riµiz̄i− ciq̄i]− γµvpsz̄v

s.t. λi = µiz̄i + θiq̄i, i= f, v; (first-time visitors)

psµvz̄v = µsz̄s + θsq̄s; (second-time visitors)∑
i=f,v,s

z̄i ≤N ;

q̄i, z̄i ≥ 0, i= f, v, s.

(5)

The first two constraints are derived by imposing q̇i(t) = 0, i= f, v, s, in the first two fluid dynamic

constraints in (4), and replacing the functions qi(t) and zi(t) by their equilibrium q̄i and z̄i, respec-

tively. Note that according to the first two constraints, the rate of visit loss is λi−µiz̄i = θiq̄i, for

classes i= f, v, and psµvz̄v −µsz̄s = θsq̄s for Class s.

Rearranging (5), by substituting

q̄i = (λi−µiz̄i)/θi, i= f, v, and q̄s = (psµvz̄v −µsz̄s)/θs,

in the objective function and omitting the constants that do not affect the optimal solution yields

the following equivalent problem:

max
z̄

∑
i=f,v,s

Riz̄i

s.t. 0≤ z̄i ≤ λi/µi, i= f, v;

0≤ z̄s ≤ psµvz̄v/µs;∑
i=f,v,s

z̄i ≤N,

(6)

where the R indexes are:

Rf = µf(rf + cf/θf),

Rv = µv (rv + cv/θv− ps (γ+ cs/θs)) ,

Rs = µs(rs + cs/θs).

(7)
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The first constraint in (6) states that at most λi/µi, i= f, v, service capacity is needed to handle

the face-to-face and virtual customers. The second constraint states that at most psµvz̄v/µs service

capacity is needed to handle the returning patients.

Note that when ri = 0, i= f, v, s, and ps = 0, we retrieve the cµ/θ indexes according to which

the cµ/θ rule prioritizes the classes (Atar et al. 2010). Note also that return probability ps and

return penalty γ reduce the virtual customers’ index. That is, as the virtual service becomes less

effective (i.e., associated with a higher return probability), the optimal policy will tend to utilize

the virtual services less. This result is intuitive in the sense that prioritizing virtual patients will

lead to excessive costs when some of them will be returning for supplementary service. In the

extreme case where the return probability and penalty are very high, the optimal decision might

be to cancel virtual services at that particular clinic entirely.

In addition to (7), we also introduce the index Rv,s, which is a weighted average of the Rv and

Rs indexes; namely,

Rv,s =
µs

µs + psµv
Rv +

psµv
µs + psµv

Rs.

Note that when ps = 0, we haveRv,s =Rv. In Section 3, we will see that in some cases the scheduling

and capacity allocation decisions rely on this integrated index. A further intuition on the integrated

Rv,s index is provided in Remark 1.

Throughout the paper, we make the technical assumption that the R indexes are all distinct.

That is, Ri 6=Rj for i 6= j. Non-unique indexes could complicate our analysis in Sections 3 and 5

by adding many more cases to consider.

Lastly, we consider an autonomous differential equation:

q̇(t) = f(q(t)) with q(0) = q0. (8)

Suppose there exists an equilibrium point q̄ so that f(q̄) = 0. Then, q̄ is globally asymptotically

stable if for any initial condition q0, limt→∞ ||q(t)− q̄||= 0, where || · || is the Euclidean norm.

3. The R-Index Policy

Because of the dependency between virtual and returning patients, the optimal solution to (6) is

not necessarily to straightforwardly assign larger values of z̄ to the ones with the larger R index.

Before we characterize the optimal solution to (6), we introduce two index-based policies, as well

as the R rule, which combines the two.
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Definition 1 (The naive R Rule). Assign priority to Class i, i = f, v, s, having the higher

Ri index.

For the following definition, we combine the virtual and supplementary classes together to form

a joint (artificial) class {v, s}, which is associated with the Rv,s index. In the first step, we set the

priority between Class f and the joint class {v, s}. Then in the second step, we set the priority

within the joint class (for Classes v and s).

Definition 2 (The two-step R Rule). Assign priority to Class i, i = f,{v, s}, with the

higher Ri index. Then, within the joint class, assign priority to Class i, i= v, s, with the higher Ri
index.

Note that when ps = 0, both the naive R rule and the two-step R rule retrieve the cµ/θ rule

(Atar et al. 2010).

Definition 3. (The R rule)

Case 1. When Rs <Rv, prioritize the classes according to the naive R rule.

Case 2. When Rs >Rv, prioritize the classes according to the two-step R rule.

Next, we prove that the optimal solution to the fluid optimization problem (6)–(7) is a globally

asymptotically stable equilibrium under the R index rule. Moreover, we characterize the capacity

allocation in equilibrium for each service channel and for different parameter regimes. Theorem 1,

which we prove in Appendix A, formalizes this result.

Theorem 1 (globally asymptotically stable equilibria). When following the R rule for

the system dynamics described in (4) from any initial condition, and for θi > 0, i = f, v, s, the

globally asymptotically stable equilibria, z̄ = (z̄f , z̄v, z̄s) and q̄= (q̄f , q̄v, q̄s), are as shown in Table 1.

The equilibrium queue lengths are then given by

q̄i = (λi−µiz̄i)/θi, i= f, v, and q̄s = (psµvz̄v −µsz̄s)/θs. (9)

Note that under Case 2, z̄s = psµvz̄v/µs, so that q̄s = 0. This makes sense since in this case, Class s

is prioritized over Class v. If q̄s > 0, we could get an improvement by shifting some capacity from

Class v to Class s. Therefore, in equilibrium, we need to make sure that just enough capacity is

allocated to Class v to assure that q̄s = 0.

The z̄’s in Theorem 1 can be interpreted as the long-run capacity allocated to each service chan-

nel. Specifically, when Rs <Rv, capacity is allocated to each service channel separately according

to its R index. In this case, returning patients are treated as any other class (except for the fact
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Table 1 Globally asymptotically stable equilibria

Case z̄f z̄v z̄s

1. The naive R rule (Rs <Rv)

1a. Rf <Rs <Rv
λf
µf
∧ (N − z̄v− z̄s) λv

µv
∧ N psµv

µs
z̄v ∧ (N − z̄v)

1b. Rs <Rf <Rv
λf
µf
∧ (N − z̄v) λv

µv
∧ N psµv

µs
z̄v ∧ (N − z̄f − z̄v)

1c. Rs <Rv <Rf
λf
µf
∧ N λv

µv
∧ (N − z̄f) psµv

µs
z̄v ∧ (N − z̄f − z̄v)

2. The two-step R rule (Rv <Rs)

2a. Rf <Rv,s
λf
µf
∧ (N − z̄v− z̄s) λv

µv
∧ µsN

µs+psµv

psµv
µs
z̄v

2b. Rv,s <Rf
λf
µf
∧ N λv

µv
∧ µs(N−z̄f )

µs+psµv

psµv
µs
z̄v

x∧ y= min(x, y).

that the class demand is determined by the capacity allocation to the virtual channel).

When Rs >Rv, however, capacity allocation of virtual and returning patients must be coordinated

to assure that enough capacity is allocated to the virtual channel that feeds the supplementary

channel. In this case, Classes v and s are treated jointly, and the relevant relation then becomes

the face-to-face channel versus the joint channel of virtual and supplementary visits.

We are now ready for Theorem 2, which establishes the optimality of the R rule for the long-run

profit maximization problem (6). The proof of the theorem, which is provided in Appendix B, is

based on Theorem 1 where we guarantee that the fluid system converges to the equilibrium point

under the R rule.

Theorem 2 (optimality of the R rule). For the long-run profit maximization problem (6),

with θi > 0, i= f, v, s, and any initial condition, the R rule is optimal.

The suggested R rule is an index-based policy; such policies often exhibit many desirable prop-

erties such as being simple to implement and achieving good (if not optimal) performance. Because

of the dependency between virtual and returning patients, there is a need to combine the naive

and two-step R rules. In Section 4, we demonstrate through extensive numerical experiments, the

effectiveness and robustness of the R rule. Specifically, we show that the policy performs very

close to optimal and much better than other known policies in various settings and under different

system loads.
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Note that Rv = µv (rv + cv/θv − ps (γ+ cs/θs)) is decreasing in ps, so the switching point between

Case 1 and Case 2 is

p̃s =
µv (rv + cv/θv)−µs (rs + cs/θs)

µv (γ+ cs/θs)
=
Rv|ps=0−Rs
µv (γ+ cs/θs)

.

Specifically, if ps < p̃s, the naive R rule is optimal, and if ps > p̃s, the two-step R rule is optimal.

In particular,

� When Rv|ps=0 <Rs, the two-step R rule is optimal for every ps ∈ [0,1];

� When Rs <Rv|ps=1 = µv

(
rv + cv/θv − (γ+ cs

θs
)
)

, the naive R rule is optimal for every ps ∈
[0,1].

Remark 1. What is the motivation for the joint index Rvs?
Intuitively, when Rs >Rv, we would tend to prioritize returning patients over virtual ones. Since

the latter are the feeding source of the former, enough capacity needs to be allocated to virtual

patients to assure that z̄s = psµvz̄v/µs.

By substituting z̄s in the objection function in (6), we get

max
z̄f ,z̄v

Rf z̄f +

(
Rv +

psµv
µs
Rs
)
z̄v. (10)

When the capacity constraint is active (i.e., z̄f + z̄v + z̄s =N), we have

z̄v =
µs

µs + psµv
(N − z̄f ) ,

which in turn is plugged in back into (10), and gives the following objective function

max
z̄f
Rf z̄f +Rv,s (N − z̄f ) .

Now it is clear that capacity needs to be allocated to Class f when Rf > Rv,s, and jointly to

Classes v and s, otherwise.

Remark 2. In urgent care centers, which constitute our main motivating application, the queue

regime is often not First Come First Served (FCFS) (e.g., Hu et al. 2022, Zychlinski et al. 2022), but

some other merit that takes into account the severity of patients’ conditions and service time. For

example, the supplementary channel might be prioritized over the first-time in-person channel if the

former has much shorter service times, since the patient will have already been diagnosed/treated

remotely, or if the patient’s condition has deteriorated (in our model this translates into a higher

holding cost). Waiting patients might perceive this as being unfair when patients arriving after

them start their service before them. To overcome this, when arriving at such centers, patients

must usually sign in at a (self-service) registration stand and receive a number. Announcements

and display screens in the waiting room show which number should enter each physician office. In

this way, the prioritization can be done through the system without being too obvious.



Author: Managing Queues with Reentrant Customers
16 Article submitted to Stochastic Systems; manuscript no. MS-

3.1. Optimal System Design

The R rule addresses the operational question of how to schedule/prioritize the three classes or

whom to admit when a physician becomes available. Additionally, the R rule addresses an even

more basic question that comes to mind when considering such a hybrid setting; specifically, it

focuses on the design question of how to allocate capacity among the three services channels. We

find that in some extreme cases, it is better to utilize only one or two service channels.

Another way of looking at the optimal system design according to the R rule is that it chooses

which channel(s) to utilize, which channel(s) not to utilize, and at most one channel to partially

utilize. Under the naive R rule, this intuition is straightforward. Under the two-step R rule, this

observation is true due to the careful balancing of capacity allocated to the virtual and supple-

mentary channels.

Table 1 describes the optimal long-run capacity allocation to the three service channels. As the

need for supplementary service increases (i.e., the return probability increases), the virtual service

becomes less effective. This is because many patients’ issues cannot be resolved through the virtual

channel. Consequently, more capacity will be allocated to the in-person service.

Figure 2 illustrates different structures of the optimal capacity allocation as a function of return

probability ps. For example, in the left plot, the policy switches from the naive R rule (Case 1a)

to the two-step R rule (Case 2a) when ps = 0.24. Then, at ps = 0.62, the policy switches within

the two-step R index to Case 2b, where the entire service capacity is allocated to the face-to-face

channel. Indeed, when the virtual service is less effective, it is better to focus mainly on the face-

to-face channel. Note that it is possible to have the same capacity allocation for different cases (see

the right plot, when switching from Case 1b to Case 1c). Moreover, there could be extreme cases

under heavy load where the optimal solution would tend not to utilize one or two service channels.

For example, when the virtual service is associated with a very high return rate, it might be best to

focus only on the face-to-face channel. Under such heavy loads when not all channels are utilized,

it might also be beneficial to optimize staffing levels by considering the trade-off between service

completion reward (including abandonment penalty) and staffing costs.

Translation of the optimal solution back to the stochastic system. In terms of scheduling, the

translation relies on the priorities determined by the R rule when a service provider becomes

available. In Section 4 we provide numerical examples demonstrating that the policy is effective

when implemented in the stochastic system. The translation of the long-term capacity allocation

is in terms of system design. That is, we determine how much capacity needs to be allocated on

average to each service channel. If, for example, the healthcare facility follows a non-sharing policy

of physicians to different service channels (e.g., in a certain shift, physicians cannot switch between
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Figure 2 Optimal capacity allocation for different values of ps (N = 1). In the left plot λf = 1.5, λv = 2.5,

for classes [f, v, s]: r= [7,6,0], c= [1,0.2,1], µ= [4,6,3], θ= [0.12,0.01,0.03] and γ = 5. In the right plot,

λf = 2, λv = 2, c= [1,0.6,0.8], µ= [4,6,3], θ= [0.08,0.03,0.04] and γ = 0.
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service channels), then the capacity allocation is the average amount of physicians’ time that needs

to be assigned to each service channel.

4. Numerical Experiments

In this section we examine the performance of the R rule in the original stochastic system using

simulation. When the number of servers is very small, we can solve the MDP numerically and

then compare it to the performance of the R rule. We also compare two other well-known policies:

the cµ/θ rule (Atar et al. 2010) and the max-weight policy (Stolyar 2004, Dai and Lin 2005). We

modify the cµ/θ rule to include the reward from each service completion; specifically, the index

of Class i is now (ri + ci/θi)µi. We also modify the max-weight policy to include the reward from

each service completion and the abandonment rate, as follows: at each time t, given X(t) = x and

Q(t) = q, the server allocation, z = (zf , zv, zs), under the max-weight policy is the solution to the

following IP:

max
z

I∑
i=1

(ri + ci/θi)µizixi

s.t.
I∑
i=1

zi ≤N, 0≤ zi ≤ xi, zi ∈N0, i= f, v, s.

(11)

We note that the numerical experiments for the stochastic system assume preemption. The fluid

analysis, however, applies for both preemptive and non-preemptive regimes.

Figure 3 presents the ratio between each policy’s long-run average profit and the optimal profit

achieved by explicitly solving the MDP. We present the ratios for different values of the return
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probability ps in four scenarios. We observe that the R rule performs very well in all scenarios and

all values of ps. The cµ/θ and the max-weight policy perform reasonably well under small return

probability. Their respective performance, however, deteriorates in comparison with the optimal

policy as the return probability increases. This deterioration prevails even when there is no penalty

associated with patient return (i.e., γ = 0).

Figure 3 Profit ratio of each policy to the optimal policy for different values of ps. λf = 1.1375N ,

λv = 1.925N , for classes [f, v, s]: r= [17.5,15,0], c= [2.5,0.2,1], µ= [4,6,3], θ= [0.12,0.01,0.03].
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Recall that the R rule was derived from a fluid approximation model that can arise as a limit

through the functional law of large numbers under the conventional heavy traffic regime. We,

therefore, wish to examine the policies’ performances under different system loads. To this end, we

define the traffic intensity as follows:

ρ :=
1

N

[
λf
µf

+
λv
µv

+
λvps
µs

]
.
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Table 2 compares the long-run average profit of the three policies to the optimal profit achieved

by solving the MDP. We vary ρ by proportionally scaling up the arrival rates. For each case and

policy we present (in parentheses) the ratio between the policy’s profit and the optimal profit. We

observe that the R rule performs very well in all cases. The performance under moderate and high

traffic intensities, when effective scheduling policies are most needed, is very close to optimal. This

is due to the fact that the R rule was derived under conventional heavy traffic, which tends to

be more accurate as traffic intensity increases. Moreover, we see that the cµ/θ and max-weight

policies perform slightly better than the R rule under very low traffic intensity. Under high traffic

intensity, however, their performance deteriorates; this deterioration does not happen under the R

rule, which keeps performing very close to optimal.

Table 2 Comparison between the long-run average profit under different policies and traffic intensities. The

numbers in parentheses are the profit ratios between each policy and the optimal one (MDP). The parameters are

for classes [f, v, s] are: r= [17.5,15,0], c= [1,0.2,1], µ= [4,6,3], θ= [0.12,0.01,0.03], γ = 0, and ps = 0.7.

Case Traffic intensity (λf , λv)
Long-run average profit

MDP R rule cµ/θ max-weight

N = 1

1 ρ= 0.3 (0.325,0.55) 14.53 13.39 (0.922) 14.13 (0.973) 13.58 (0.935)

2 ρ= 0.45 (0.4875,0.825) 20.95 20.60 (0.983) 20.56 (0.981) 19.96 (0.952)

3 ρ= 0.6 (0.65,1.1) 29.18 29.02 (0.995) 27.05 (0.927) 27.78 (0.952)

4 ρ= 0.75 (0.8125,1.375) 35.64 35.24 (0.989) 31.72 (0.89) 32.55 (0.913)

5 ρ= 0.9 (0.975,1.65) 41.71 41.4 (0.993) 34.28 (0.822) 35.42 (0.849)

6 1.05 (1.1375,1.925) 40.47 40.25 (0.994) 33.25 (0.822) 24.85 (0.861)

7 ρ= 1.2 (1.3,2.2) 33.86 33.6 (0.992) 28.32 (0.836) 28.1 (0.83)

N = 3

8 ρ= 0.3 (0.975,1.65) 42.35 41.26 (0.974) 42.15 (0.995) 41.23 (0.973)

9 ρ= 0.45 (1.4625,2.475) 63.25 62.87 (0.994) 61.83 (0.978) 62.89 (0.994)

10 ρ= 0.6 (1.95,3.3) 88.84 88.6 (0.997) 86.33 (0.972) 86.93 (0.978)

11 ρ= 0.75 (2.4375,4.125) 109.6 109.4 (0.998) 104.38 (0.952) 105.62 (0.964)

12 ρ= 0.9 (2.925,4.95) 127.9 127.63 (0.998) 115.23 (0.901) 119.862 (0.935)

13 ρ= 1.05 (3.4125,5.775) 122.3 122.22 (0.999) 108.97 (0.891) 113.36 (0.972)

14 ρ= 1.2 (3.9,6.6) 101.8 101.67 (0.999) 87.62 (0.861) 86.63 (0.851)

Next, we examine the performance of the R rule for different system sizes. Figure 4 compares the

suggested R rule to the cµ/θ rule. Using simulation, we calculated the average capacity allocated

to each channel (i.e., the average number of patients in service) and the average profit for each

policy. The circles present the optimal allocation and long-run profit according to the fluid solution.
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The results are presented for different system sizes. As N increases, we scale up the arrival rates

proportionally using an appropriate Poisson process. In Example 1, the R rule allocation (which

coincides with the fluid solution) suggests allocating a similar amount of capacity to each service

channel (the capacity ratio is (0.375,0.34,0.285) for the face-to-face, virtual and supplementary

channels, respectively). The cµ/m rule, however, assigns most of the capacity to the supplementary

and virtual channels, and relatively little capacity to the face-to-face channel (the capacity ratio

is (0.115,0.425,0.46)). The R rule in this example achieves a 78% higher long-run average profit

than the cµ/θ rule. In Example 2, the R rule allocation (which again coincides with the fluid

solution) suggests allocating most of the capacity to the face-to-face channel, and the remainder

to the virtual and supplementary channels. The cµ/m rule, however, assigns most of the capacity

to the virtual channel and then to the supplementary one. It allocates almost no capacity to the

face-to-face channel. In terms of system design, following the cµ/θ rule will lead to utilizing only the

virtual and supplementary channels, and eliminating the face-to-face channel. The R rule achieves

a 21% higher long-run average profit than the cµ/θ rule. Note that to facilitate a relatively fair

comparison, we do not consider the return penalty in these experiments (i.e., γ = 0).

To demonstrate why the naive R rule is insufficient, especially in heavily loaded systems, we

focus on a setting where the scheduling according to the R rule and the naive R rule are different.

Specifically, let N = 15, ps = 0.8, γ = 0, λf = 45, λv = 90; for classes [f, v, s]: r = [12,12,8], c =

[2.5,0.2,1.5], µ= [4,6,6], θ= [0.8,0.1,0.3]. In this example, theR rule allocates most of the capacity

to the supplementary and virtual channels, while allocating very little capacity to the face-to-face

channel. The naive R rule, however, allocates most of the capacity to the face-to-face channel.

These two policies lead to a completely different system design. In this case, the long-run average

profit under the R rule is 700, which is 15.7% higher than the 590 achieved by the naive R rule.

We can summarize these examples by first stating that the fluid approximation accurately

describes the stochastic system. Second, we see that each policy can lead to a different prioritiza-

tion and different system design. Third, we observe that the R rule achieves higher average profit

compared to the other two policies for different system sizes.

4.1. Performance of the R Rule Under Transient Profit Maximization

In some settings, there could be random shocks that move the system far from its usual mode of

operation. In these cases, improving the transient performance of the system becomes the main

goal. That is, we want to find an effective scheduling policy to support demand surges. The Covid-

19 pandemic, for example, caused sudden surges in demand on healthcare systems around the



Author: Managing Queues with Reentrant Customers
Article submitted to Stochastic Systems; manuscript no. MS- 21

Figure 4 Policy performance for different system sizes. The circles represent the optimal fluid solution. In

Example 1, the parameters are: λf = 1.5N, λv = 2.5N , r= [17.5,15,0], c= [2.5,0.2,1], µ= [4,6,3],

θ= [0.12,0.01,0.03] ps = 0.6, γ = 0 and in Example 2: λf = 2.4N, λv = 4N , r= [7,6,4], c= [2.5,0.2,1.2],

µ= [4,6,6], θ= [0.8,0.1,0.3] ps = 0.8 and γ = 0.
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Example 1: Average capacity allocation
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Example 1: Long-run average profit
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Example 2: Average capacity allocation

0 5 10 15 20

Number of servers

0

100

200

300

400

500

600

700

800

L
o

n
g

-r
u

n
 a

v
e

ra
g

e
 p

ro
fi
t

Example 2: Long-run average profit

world. We consider the objective of maximizing the cumulative expected profit over a finite time

horizon T . The fluid equivalent is, therefore,

max
z,q

∫ T

t=0

∑
i=f,v,s

[riµizi(t)− ciqi(t)]− γpsµvzv(t)dt.

We observe through numerical experiments that even when the arrival rate is highly non-

stationary, the R rule still performs very well in maximizing the transient profit compared to the

cµ/θ rule. Figure 5 presents a scenario in which at time t= 600, both classes experience a quadratic

surge in demand that lasts 800 time units. The left plot presents the instantaneous profit as a func-

tion of time over the time horizon [0,2000]. The right plot presents the average number of patients

in service for each class over the time horizon. During the surge in demand, both the R rule and
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the cµ/θ rule become more extreme in their prioritization: the R rule allocates the entire capacity

to the face-to-face channel, while the cµ/θ allocates the entire capacity to the virtual channel,

leaving almost no capacity for returning patients. In terms of the objective function, the R rule

achieves twice the cumulative profit than the cµ/θ rule. This result demonstrates the robustness

of the R rule, even in maximizing the transient performance.

Figure 5 Policy’s transient performance. The parameters are N = 3, λf(t) =−3.88e−5t2 +0.078t− 19.42

when 600≤ t≤ 1400, and otherwise λf(t) = 9. λv(t) =−6.46e−5t2 +0.13t− 32.37, when 600≤ t≤ 1400,

and otherwise λf(t) = 15. r= [7,6,4], c= [2.5,0.2,1], µ= [4,6,6], θ= [0.8,0.1,0.3], ps = 0.8 and γ = 0.
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5. Model Extensions

We now discuss two model extensions. The first considers multiple face-to-face, virtual and sup-

plementary classes. The second extension refers to the virtual channel as a teletriage system that

classifies patients according to the supplementary service they require (as opposed to a binary

decision that we have considered thus far).

5.1. Multiple Classes in Each Service Channel

In this section we consider a more general setting with kf face-to-face classes of patients, and kv

(=ks) virtual and supplementary classes, as illustrated in Figure 6. The different classes within

each channel may represent different severity levels. Specifically, each face-to-face, virtual and

supplementary class is characterized by
(
λif , µ

i
f , θ

i
f , c

i
f , r

i
f

)
, i= 1, . . . , kf , (λiv, µ

i
v, θ

i
v, c

i
v, r

i
v, p

i
s, γ

i), i=

1, . . . , kv, and (µis, θ
i
s, c

i
s, r

i
s), i= 1, . . . , kv, respectively. In total, the scheduling problem in this case

needs to consider kf + 2kv classes.

The equivalent problem to (5), for which the optimal equilibrium point would maximize the

long-run average profit, is:
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Figure 6 A hybrid system with multiple classes in each service channel.
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max
q̄,z̄

∑
j=f,v,s

kj∑
i=1

[
rijµ

i
j z̄
i
j − cij q̄ij

]
−

kv∑
i=1

γiµivp
i
sz̄
i
v

s.t. λij = µij z̄
i
j + θij q̄

i
j, j = f, v, i= 1, . . . , kj; (first-time visitors)

pisµ
i
vz̄
i
v = µisz̄

i
s + θisq̄

i
s; i= 1, . . . , kv; (second-time visitors)

∑
j=f,v,s

kj∑
i=1

z̄ij ≤N ;

q̄ij, z̄
i
j ≥ 0, j = f, v, s, i= 1, . . . , kj.

(12)

Rearranging (12) and omitting the constants yields the following:

max
z̄

∑
j=f,v,s

∑
i=1,...kj

Ri
j z̄
i
j

s.t. 0≤ z̄ij ≤ λij/µij, j = f, v, i= 1, . . . , kj; (first-time visitors)

0≤ z̄is ≤ pisµivz̄iv/µis, i= 1, . . . , kv; (second-time visitors)∑
j=f,v,s

∑
i=1,...kj

z̄ij ≤N,

(13)
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where the R indexes are:

Ri
f = µif

(
rif + cif/θ

i
f

)
, i= 1, . . . , kf ;

Ri
v = µiv

(
riv + civ/θ

i
v− pis

(
γi + cis/θ

i
s

))
, i= 1, . . . , kv;

Ri
s = µis

(
ris + cis/θ

i
s

)
, i= 1, . . . , ks.

(14)

We also have the equivalent Rv,s for each virtual/supplementary class:

Ri
v,s =

µis
µis + pisµ

i
v

Ri
v +

pisµ
i
v

µis + pisµ
i
v

Ri
s, i= 1, . . . , kv.

Proving the optimality of a generalized form of the R rule in this setting requires us to

follow the line of analysis conducted in Section 3. That is, we must first prove that under

the generalized R rule, the fluid approximation converges to an equilibrium point that is a

globally asymptotically stable one (a generalization of Theorem 1). Then, we must prove

that the optimal solution to (13)–(14) is the globally asymptotically stable equilibrium

(a generalization of Theorem 2). Utilizing this approach will quickly become prohibitively

tedious with too many scenarios to consider. We, therefore, provide an algorithm that

extends the essence of the R rule for setting the prioritization among classes. Note that

for a given set of parameters, this algorithm needs to be run once.

The following algorithm utilizes the sorted set S, including the classes’R indexes accord-

ing to which the priority among classes is set.

Algorithm 1 (The generalized R rule for multiple classes)

1. Set S ←
{
Ri
f , i= 1, . . . kf

}
2. For each Class i, i= 1, . . . , kv

(a) If Ri
s <Ri

v, then S ←S ∪{Ri
v,Ri

s}

(b) Otherwise, S ←S ∪
{
Ri
v,s

}
3. Sort the set S in a decreasing order

4. Replace the Ri
v,s’s in S with {Ri

s,Ri
v}

5. Return S
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The prioritization of classes will be done according to their order in the sorted set S. The

algorithm shares the same principles as theR rule presented in Section 3: if the index of the

virtual class is higher than the index of the supplementary class, then the prioritization is

set according to the R indexes. If, however, the index of the supplementary class is higher

than the index of the virtual class, we jointly prioritize the virtual and supplementary

classes according to their integrated Rv,s index.

5.2. A Teletriage System with Multiple Supplementary Services

Thus far, we assumed that each virtual service can lead to one type of supplementary

service. Nevertheless, one common strategy for controlling healthcare needs, which is called

“forward triage”, refers to the online channel as a sorting stage offered to patients. It

allows them to be efficiently screened before being referred to a medical center. Respiratory

symptoms, which may be early signs of Covid-19, for example, can commonly be evaluated

using this approach (Hollander and Carr 2020).

Motivated by such a teletriage setting, we study a model extension in which, based on

an initial virtual assessment, patients are classified according to the supplementary service

they require. The supplementary services vary in their urgency, length and/or cost. To

this end, we consider ks optional supplementary services for each virtual service. Each

supplementary service i occurs with probability pis, i= 1, . . . , ks, and is associated with a

supplementary class that is characterized by (pis, µ
i
s, θ

i
s, c

i
s, r

i
s, γi), as illustrated in Figure 7.

The equivalent problem to (5), for which the optimal equilibrium point would maximize

the long-run average profit, is:

max
q̄,z̄

∑
j=f,v

[rjµj z̄j − cj q̄j] +

ks∑
i=1

[
risµ

i
sz̄
i
s− cisq̄is− γiµvpisz̄v

]
s.t. λi = µiz̄i + θiq̄i, i= f, v; (first-time visitors)

pisµvz̄v = µisz̄
i
s + θsq̄

i
s; i= 1, . . . , kv; (second-time visitors)∑

j=f,v

z̄j +

ks∑
i=1

z̄is ≤N ;

q̄j, z̄j, q̄
i
s, z̄

i
s ≥ 0, j = f, v, i= 1, . . . , kv.

(15)
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Figure 7 A hybrid system with multiple supplementary services.
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Rearranging (15) yields the following:

max
z̄

∑
j=f,v

Rj z̄j +
ks∑
i=1

Ri
sz̄
i
s

s.t. 0≤ z̄j ≤ λj/µj, j = f, v; (first-time visitors)

0≤ z̄is ≤ pisµvz̄v/µis, i= 1, . . . , kv; (second-time visitors)∑
j=f,v

z̄j +
ks∑
i=1

Ri
sz̄
i
s ≤N,

(16)

where the R indexes are:

Rf = µf (rf + cf/θf) ;

Rv = µv

(
rv + cv/θv−

ks∑
i=1

pis
(
γi + cis/θ

i
s

))
;

Ri
s = µis

(
ris + cis/θ

i
s

)
, i= 1, . . . , ks.

(17)

We denote the joint virtual/supplementary index for a set of supplementary classes, B:

RBv,s =

∑
i∈B µ

i
s∑

i∈B µ
i
s +µv

∑
i∈B p

i
s

Rv +
∑
i∈B

pisµv∑
i∈B µ

i
s +µv

∑
i∈B p

i
s

Ri
s. (18)
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The RBv,s index is an extension of the Rv,s index that was used when each virtual service

could lead to a single type of supplementary service. The interpretation of the index remains

the same – it is the weighted average of the virtual and supplementary R indexes. When

B includes one supplementary service, we retrieve the original Rv,s.

As stated in Section 5.1, proving the optimality of a generalized form of the R rule

in this setting requires us to follow the line of analysis conducted in Section 3. Utilizing

this approach will quickly become prohibitively tedious. Therefore, we provide a heuristic

algorithm in the spirit of the R rule for setting the prioritization among classes. Note that

for a given set of parameters, this algorithm needs to be run once.

The following algorithm uses two sorted sets: S and B. The set S includes the classes’ R

indexes according to which the priority among classes is set. The set B includes the classes

for which their Ri
s index is larger than Rv.

Algorithm 2 (The generalized R rule for multiple supplementary services)

1. Set S ←{Rf} and B= {v}

2. For each Class i, i= 1, . . . , ks

(a) If Ri
s <Rv, then S ←S ∪{Ri

s}

(b) Otherwise, B←B∪{i}

3. Calculate RBv,s according to (18)

4. Sort in a decreasing order the set S ∪RBv,s and the set B according to the R indexes

5. Replace the index RBv,s in S with the R indexes of the classes in B

6. Return S

The prioritization of classes will be done according to their order in the sorted set S.

The ideas behind the algorithm are the same as for the R rule presented in Section 3: The

supplementary classes whose R index is smaller than Rv can be prioritized as any other

class. The supplementary classes whose R index is larger than Rv need to be considered

jointly with the virtual class and the other supplementary classes by using the joint RBv,s
index.
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6. Concluding Remarks and Future Directions

Motivated by healthcare provision trends, in this paper we study the optimal scheduling

and capacity allocation for multi-server queues where patients may return for supplemen-

tary service. The main motivating example for this work is a hybrid healthcare setting

that provides three service channels: face-to-face, virtual and in-person supplementary ser-

vices that some patients require following virtual service. The strong dependency between

the virtual and returning patients (i.e., the former constitute the feeding source for the

latter) imposes additional constraints when scheduling and allocating capacity. Using a

fluid relaxation approach, we derive and prove the optimality of the R index rule for max-

imizing the long-run average profit. From an operational point of view, the R rule helps

prioritize classes (i.e., which class to admit when a service provider becomes available).

From a design perspective, the R rule allocates capacity for each service channel. We show

that the R rule performs very close to optimal, and significantly better than other known

policies, in various settings and under different system loads. Lastly, we show that even

though the R rule is designed to maximize long-run average profit, it also performs well

in a transient time-horizon and non-stationary arrival scenario.

We identify a few interesting future research directions. The first is to consider non-

stationary systems with time-varying arrival rates. Indeed, urgent care centers often expe-

rience such arrival patterns and peak hours where the demand is much higher than at other

times of the day (Armony et al. 2015). Deriving an effective robust scheduling policy under

arbitrary time-varying arrival rates is challenging, since the optimal policy may depend on

these time-varying arrival rates as well as on the system’s state. Moreover, it is plausible

that the arrival rates to the virtual and in-person channels are not synchronized: at some

hour during the day, patients may prefer the virtual channel, while at other hours, patients

may prefer the in-person channel; these patterns, in turn, also affect the supplementary

channel.

The second direction is related to improved continuity of care. That is, allow patients

to see the same physician in their virtual visit and supplementary in-person visit, when

needed. Specifically, there would be two types of queues to consider: The first is a joint

queue for all physicians and first-time visitors. The second type of queue, for second-time

visitors, would be separate for each physicians. The queue management and scheduling

policy would have to take into account both queue types.
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Another interesting direction is to incorporate strategic behavior. On the one hand,

the patient chooses which service channel to use: face-to-face or virtual, according to the

expected waiting cost and return probability. On the other hand, by considering patients’

behavior, the healthcare provider chooses how to allocate capacity among the three services

in order to maximize its profits. Another interesting direction is to focus on reimburse-

ment policies (e.g., fee-for-service vs. bundled payment) for the different service channels.

Through these reimbursement policies, virtual services can be encouraged or discouraged

in order to optimize system performance and healthcare provision.
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Appendix A: Proof of Theorem 1.

The proof follows a similar line of arguments for each case in Table 1. Therefore, we only present the proof

for Case 1a as representative of Cases 1b and 1c, as part of the naive R rule, and Case 2a as representative

of Case 2b, as part of the two-step R rule. Since the rest of the cases follow similarly, we omitted them. Our

proof, which is based on the construction of a Lyapunov function, resembles the proof of Theorem 4 in Hu

et al. (2022).

A.1. Case 1a: Rf <Rs <Rv

In this case we consider the four sub-cases described in Table 3. For each sub-case we prove that the globally

asymptotically stable equilibrium q̄f , q̄v, q̄s is as it appears in the table. In this case, the R rule gives strict

priority to Class v, then to Class r, and finally to Class f .

Table 3 Globally asymptotically stable equilibria – Case 1a.

Sub-case q̄f q̄v q̄s

I.
λf

µf
+ λv

µv
+ psµv

µs
N ≤N 0 0 0

II. λv

µv
+ psλv

µs
≤N <

λf

µf
+ λv

µv
+ psµv

µs
N

µf

θf

[
λf

µf
+ λv

µv
+ λvps

µs
−N

]+
0 0

III. λv

µv
≤N < λv

µv
+ psλv

µs

λf

θf
0 1

θs

(
λvps−µs

(
N − λf

µv

))
IV. N < λv

µv
.

λf

θf

λv−µvN

θv

psµvN

θs

x+ = max(x,0).

� Sub-case 1a-I.
λf
µf

+ λv
µv

+ psµv
µs
N ≤N . We consider the Lyapunov function

V (q) =
∑
i=f,v,s

1

µi
|qi− q̄i|,

where the equilibrium point q̄= (0,0,0), and show its asymptotic stability. To this end, we

first verify that V (q̄) = 0 and V (q)→∞ as ‖q‖→∞. Then, we show that ∇qV (q)Tf(q)< 0

for q 6= q̄, where q̇(t) = f(q(t)), as defined in (8).

— When qv(t) > 0, all capacity is allocated to Class v. Specifically, the system

dynamics in (4) are as follows:


q̇v(t) = λv−µvN − θvqv(t);

q̇s(t) = psµvN − θsqs(t);

q̇f(t) = λf − θfqf(t).
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We have

∇qV (q)Tf(q) =
1

µv
(λv−µvN − θvqv(t)) +

1

µs
(psµvN − θsqs(t)) +

1

µf
(λf − θfqf(t))

=
λf
µf

+
λv
µv
−N

(
1− psµv

µs

)
− θvqv(t)

µv
− θsqs(t)

µs
− θfqf(t)

µf
< 0,

where the inequality comes from the sub-case’s condition and the assumption that θ > 0.

— When qv(t) = 0 and qs(t) > 0, the required capacity for Class v is allocated, and

any leftover capacity is allocated to Class r. The system dynamics are therefore:


q̇v(t) = λv−µvz̃v;

q̇s(t) = psµvz̃v−µs (N − z̃v)− θsqs(t);

q̇f(t) = λf − θfqf(t),

where z̃v =
(
λv
µv
∧N

)
.

We have,

∇qV (q)Tf(q) =
1

µv
(λv−µvz̃v) +

1

µs
(psµvz̃v−µs (N − z̃v)− θsqs(t)) +

1

µf
(λf − θfqf(t))

=
λf
µf

+
λv
µv
−N +

µvps
µs

z̃v−
θsqs(t)

µs
− θfqf(t)

µf

≤ λf
µf

+
λv
µv
−N +

µvps
µs

N − θsqs(t)
µs

− θfqf(t)
µf

< 0,

where the first inequality comes from the fact that z̃v = (λv/µv ∧N)≤N ; the last inequality

comes from the sub-case’s condition and the assumption that θ > 0.

— When qv(t) = 0, qs(t) = 0 and qf(t) > 0, the required capacity to Class v and

then r is allocated; any other left capacity is allocated to Class f . The system dynamics

are as follows:


q̇v(t) = λv−µvz̃v;

q̇s(t) = psµvz̃v−µs
(
psµv
µs
z̃v ∧ (N − z̃v)

)
;

q̇f(t) = λf −µf
(
λf
µf
∧
(
N − z̃v−

(
psµv
µs
z̃v ∧ (N − z̃v)

)))
− θfqf(t);

where as before, z̃v =
(
λv
µv
∧N

)
.
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We have

∇qV (q)Tf(q) =
1

µv
(λv−µvz̃v) +

1

µs

(
psµvz̃v−µs

(
psµv
µs

z̃v ∧ (N − z̃v)
))

+
1

µf

(
λf −µf

(
λf
µf
∧
(
N − z̃v−

(
psµv
µs

z̃v ∧ (N − z̃v)
)))

− θfqf(t)
)

=
λf
µf

+
λv
µv
− z̃v +

psµv
µs

z̃v−
(
psµv
µs

z̃v ∧ (N − z̃v)
)

−
(
λf
µf
∧
(
N − z̃v−

(
psµv
µs

z̃v ∧ (N − z̃v)
)))

− θfqf(t)
µf

.

If z̃v = λv/µv, we have

∇qV (q)Tf(q) =
λf
µf
−
(
λf
µf
∧
(
N − λv

µv
− psλv

µs

))
− θfqf(t)

µf

=

[
λf
µf

+
λv
µv

+
psλv
µs
−N

]+

− θfqf(t)
µf

≤
[
λf
µf

+
λv
µv

+
psµv
µs

N −N
]+

− θfqf(t)
µf

< 0.

The first equality comes from the fact that when λv ≤Nµv, we have psλv/µs ≤N −λv/µv.
This is because λv ≤Nµvµs (psµv +µs), which is equivalent to λv (ps/µs + 1/µv)≤N . The

inequality comes from the sub-case’s condition and the assumption that θ > 0.

If z̃v =N , we have

∇qV (q)Tf(q) =
λf
µf

+
λv
µv
−N +

psµv
µs

N − θfqf(t)
µf

< 0,

where the inequality come from the sub-case’s condition and the assumption that θ > 0.

� Sub-case 1a-II. λv
µv

+ psλv
µs
≤N <

λf
µf

+ λv
µv

+ psµv
µs
N . We consider the Lyapunov function

V (q) =
∑
i=f,v,s

1

µi
|qi− q̄i|,

where the equilibrium point q̄ =

(
µf
θf

[
λf
µf

+ λv
µv

+ λvps
µs
−N

]+

, 0, 0

)
, and show its asymp-

totic stability.

— When qv(t)≥ q̄v, qs(t)≥ q̄s, qf(t)≥ q̄f , and q(t) 6= q̄,

The system dynamics are as follows:
q̇v(t) = λv−µvz̃v− θvqv(t);

q̇s(t) = psµvz̃v−µs
(
psµv
µs
z̃v ∧ (N − z̃v)

)
− θsqs(t);

q̇f(t) = λf −µf
(
λf
µf
∧
(
N − z̃v−

(
psµv
µs
z̃v ∧ (N − z̃v)

)))
− θfqf(t).
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We have,

∇qV (q)Tf(q) =
1

µv
(λv−µvz̃v− θvqv(t)) +

1

µs

(
psµvz̃v−µs

(
psµv
µs

z̃v ∧ (N − z̃v)
)
− θsqs(t)

)
+

1

µf

(
λf −µf

(
λf
µf
∧
(
N − z̃v−

(
psµv
µs

z̃v ∧ (N − z̃v)
)))

− θfqf(t)
)

=
λf
µf

+
λv
µv
− z̃v +

psµv
µs

z̃v−
(
psµv
µs

z̃v ∧ (N − z̃v)
)
− θfqv(t)

µv
− θsqs(t)

µf
− θfqf(t)

µf

−
(
λf
µf
∧
(
N − z̃v−

(
psµv
µs

z̃v ∧ (N − z̃v)
)))

.

If z̃v = λv/µv, we have

∇qV (q)Tf(q) =
λf
µf
−
(
λf
µf
∧
(
N − λv

µv
− psλv

µs

))
− θvqv(t)

µv
− θsqs(t)

µs
− θfqf(t)

µf

=

[
λf
µf

+
λv
µv

+
psλv
µs
−N

]+

− θvqv(t)
µv

− θsqs(t)
µs

− θfqf(t)
µf

<

[
λf
µf

+
λv
µv

+
psλv
µs
−N

]+

− θvq̄v
µv
− θsq̄s

µs
− θf q̄f

µf
= 0,

where the first inequality comes from the fact that qv(t)≥ q̄v, qs(t)≥ q̄s, qf(t)≥ q̄f , and

q(t) 6= q̄.

If z̃v =N , we have

∇qV (q)Tf(q) =
λf
µf

+
λv
µv

+
psµv
µs

N −N − θvqv(t)
µv

− θsqs(t)
µs

− θfqf(t)
µf

<
λf
µf

+
λv
µv

+
psλv
µs
−N − θvq̄v

µv
− θsq̄s

µs
− θf q̄f

µf
= 0,

where the inequality comes first from the fact that when z̃v =N , Nµv <λc; then from the

fact that qv(t)≥ q̄v, qs(t)≥ q̄s, qf(t)≥ q̄f , and q(t) 6= q̄.

— When qv(t) < q̄v, qs(t) < q̄s, qf(t) < q̄f , and q(t) 6= q̄, due to the absolute

value in the Lyapunov function, we get the same ∇qV (q)Tf(q) as in the previous case only

with a negative sign and, therefore,

∇qV (q)Tf(q)<−λf
µf
− λv
µv

+ z̃v−
psµv
µs

z̃v +

(
psµv
µs

z̃v ∧ (N − z̃v)
)

+
θf q̄v
µv

+
θsq̄s
µf

+
θf q̄f
µf

+

(
λf
µf
∧
(
N − z̃v−

(
psµv
µs

z̃v ∧ (N − z̃v)
)))

.

From here the proof follows the same line of arguments as in previous case. The other four

options for the different relations between qi(t) and q̄i are handled in the exact same way

and, therefore, are omitted.
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� Sub-case 1a-III. λv
µv
≤N < λv

µv
+ psλv

µs
. We consider the Lyapunov function

V (q) =
∑
i=f,v,s

|qi− q̄i|,

where the equilibrium point q̄= (q̄v, q̄s, q̄f) = (0, (psλv−µs (N −λv/µv))/θs, λf/θf), and

show its asymptotic stability.

— When qv(t)≥ q̄v, qs(t)≥ q̄s, qf(t)≥ q̄f , and q(t) 6= q̄, the system dynamics

are: 
q̇v(t) = λv−µv λvµv − θvqv(t) =−θvqv(t);

q̇s(t) = psλv−µs
(
N − λv

µv

)
− θsqs(t);

q̇f(t) = λf + psλv− θfqf(t).

We, therefore, have

∇qV (q)Tf(q) = λf + psλv−µs
(
N − λv

µv

)
− θvqv(t)− θsqs(t)− θfqf(t)

<λf + psλv−µs
(
N − λv

µv

)
− θvq̄v− θsq̄s− θf q̄f = 0,

where the inequality comes from the fact that qv(t)≥ q̄v, qs(t)≥ q̄s, qf(t)≥ q̄f , and q(t) 6= q̄.

— When qv(t) < q̄v, qs(t) < q̄s, qf(t) < q̄f , and q(t) 6= q̄, we get the same

∇qV (q)Tf(q) as in the previous case with a negative sign; namely,

∇qV (q)Tf(q) =−λf − psλv +µs

(
N − λv

µv

)
+ θvqv(t) + θsqs(t) + θfqf(t)

<−λf − psλv +µs

(
N − λv

µv

)
+ θvq̄v + θsq̄s + θf q̄f = 0,

where the inequality comes from the fact that qv(t)> q̄v, qs(t)> q̄s, qf(t)> q̄f , and q(t) 6= q̄.

The other four options for the different relations between qi(t) and q̄i are handled in the

exact same way and, therefore, are omitted.

� Sub-case 1a-IV. N < λv
µv

. We consider the Lyapunov function

V (q) =
∑
i=f,v,s

|qi− q̄i|,

where the equilibrium point q̄ = (q̄v, q̄s, q̄f) = ((λv−µvN)/θv, psµvN/θs, λf/θf), and

show its asymptotic stability. Since the conditions V (q̄) = 0 and V (q)→∞ as ‖q‖ →∞

can easily be verified, we focus on showing that ∇qV (q)Tf(q)< 0 for q 6= q̄.
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— When qv(t)≥ q̄v, qs(t)≥ q̄s, qf(t)≥ q̄f , and q(t) 6= q̄, all capacity is allo-

cated to Class v. The system dynamics are therefore,
q̇v(t) = λv−µvN − θvqv(t);

q̇s(t) = psµvN − θsqs(t);

q̇f(t) = λf − θfqf(t);

We have

∇qV (q)Tf(q) = λv−µvN − θvqv(t) + psµvN − θsqs(t) +λf − θfqf(t)

= λf +λv−µvN + psµvN − θvqv(t)− θsqs(t)− θfqf(t)

<λf +λv−µvN + psµvN − θvq̄v− θsq̄s− θf q̄f = 0,

where the inequality comes from the fact that qv(t)≥ q̄v, qs(t)≥ q̄s, qf(t)≥ q̄f , and q(t) 6= q̄.

— When qv(t) < q̄v, qs(t) < q̄s, qf(t) < q̄f , and q(t) 6= q̄, we have,

∇qV (q)Tf(q) =− (λv−µvN − θvqv(t))− (psµvN − θsqs(t))− (λf − θfqf(t))

=−λf −λv +µvN − psµvN + θvqv(t) + θsqs(t) + θfqf(t)

<−λf −λv +µvN − psµvN + θvq̄v + θsq̄s + θf q̄f = 0,

where the inequality comes from the fact that qv(t)< q̄v, qs(t)< q̄s, qf(t)< q̄f .

The other four options for the different relations between qi(t) and q̄i are handled in the

exact same way and, therefore, are omitted.

A.2. Case 2a: Rf <Rv,s (Rv <Rs)

In this case we consider the four sub-cases described in Table 4. For each sub-case we prove

that the globally asymptotically stable equilibrium q̄f , q̄v, q̄s is as it appears in the table. In

this case, the R rule gives strict priority to Class v, then to Class r, and, finally, to Class

f .

Next, we construct a Lyapunov function for each case and show the globally asymptoti-

cally stability of the equilibrium point. Since the line of arguments is the same for all cases,

we provide the proof for Case 2a.I and omit the others.

� Sub-case 2a-I.
λf
µf

+ λv
µv

+ psλv
µs
≤N . We consider the Lyapunov function

V (q) =
1

µf
|qf − q̄f |+

psµv +µs
µvµs

|qv− q̄v|+
1

µs
|qs− q̄s|,

where the equilibrium point q̄= (0,0,0), and show its asymptotic stability.
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Table 4 Globally asymptotically stable equilibria – Case 2a.

Sub-case q̄f q̄v q̄s

I.
λf

µf
+ λv

µv
+ psλv

µs
≤N 0 0 0

II. λv

µv
+ psλv

µs
≤N <

λf

µf
+ λv

µv
+ psλv

µs

µf

θf

[
λf

µf
+ λv

µv
+ λvps

µs
−N

]+
0 0

III. N < λv

µv
+ psλv

µs

λf

θf

1
θv

(
λv − µvµs

psµv+µs
N
)

0

— When qv(t) > 0 and qs(t) = 0, all capacity is allocated to Classes s and v. Specif-

ically, the system dynamics in (4) are as follows:
q̇v(t) = λv− µvµs

psµv+µs
N − θvqv(t);

q̇s(t) = psµvµs
psµv+µs

N − µspsµv
psµv+µs

N = 0;

q̇f(t) = λf − θfqf(t);

We have

∇qV (q)Tf(q) =
psµv +µs
µvµs

(
λv−

µvµs
psµv +µs

N − θvqv(t)
)

+
1

µf
(λf − θfqf(t))

=
λf
µf

+
λv(psµv +µs)−µvµsN

µvµs
− θvqv(t)

µvµs
− θfqf(t)

µf

=
λf
µf

+
λv
µv

+
psλv
µs
−N − θvqv(t)

µvµs
− θfqf(t)

µf
< 0,

where the inequality comes from the sub-case’s condition and the assumption that θ > 0.

— When qv(t) = 0, qs(t) = 0 and qf(t) > 0, the required capacity is allocated to

Class v and then s is allocated: λv/µv to Class v and psλv/µs; any leftover capacity is

allocated to Class f . The system dynamics are therefore,


q̇v(t) = λv−µv λvµv = 0;

q̇s(t) = psλv− psλv = 0;

q̇f(t) = λf −µf
(
λf
µf
∧
(
N − λv

µv
− psλv

µs

))
− θfqf(t).

We have

∇qV (q)Tf(q) =
1

µf

(
λf −µf

(
λf
µf
∧
(
N − λv

µv
− psλv

µs

))
− θfqf(t)

)
=
λf
µf
−
(
λf
µf
∧
(
N − λv

µv
− psλv

µs

))
− θfqf(t)

µf
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=

[
λf
µf

+
λv
µv

+
psλv
µs
−N

]+

− θfqf(t)
µf

≤
[
λf
µf

+
λv
µv

+
psµv
µs

N −N
]+

− θfqf(t)
µf

< 0,

where the first inequality comes from the fact that when λv ≤Nµv. The second inequality

comes from the sub-case’s condition and the assumption that θ > 0.

The development for Case 2a.II and Case 2a.III follows similarly and is thus omitted. The

Lyapunov functions we use are

V (q) =
1

µf
|qf − q̄f |+

psµv +µs
µvµs

|qv− q̄v|+
1

µs
|qs− q̄s|,

for Case 2a.II, and

V (q) =
∑
i=f,v,s

|qi− q̄i|,

for Case 2a.III. The equilibrium queue lengths are given in Table 4. Q.E.D.

Appendix B: Proof of Theorem 2.

Recall the long-run profit maximization problem (6)–(7). Let z̄∗ = (z̄∗f , z̄
∗
v , z̄
∗
s) and q̄∗ =

(q̄∗f , q̄
∗
v , q̄
∗
s) denote its solution (i.e., long-run average capacity allocation and corresponding

queue length for each class). To prove the optimality of the R rule, it suffices to show that

z̄∗ and q̄∗ constitute the globally asymptotically stable equilibrium established in Theorem

1. We, therefore, consider the same cases as in Theorem 1, and present the optimal solution

z̄∗ and q̄∗. As before, we present the results for Case Ia and Cases 2b, and omit the other

cases that follow the same line of arguments.

B.1. Case 1a: Rf <Rs <Rv

In this case we consider the four sub-cases described in Table 3. For each sub-case we prove

that the globally asymptotically stable equilibrium q̄f , q̄v, q̄s is as it appears in the table. In

this case, the R rule gives strict priority to Class v, then to Class r, and, finally, to Class

f .

Except for sub-case I, where there is enough capacity to serve all customers, the other

sub-cases priorities are: Class v, then Class s, and lastly Class f . This is in line with the

R rule prioritization in this case.
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Table 5 Optimal solution – Case 1a.

Sub-case (z̄∗f , z̄
∗
v , z̄

∗
s ) (q̄∗f , q̄

∗
v , q̄

∗
s )

I.
λf

µf
+ λv

µv
+ psµv

µs
N ≤N

(
λf

µf
, λv

µv
, psλv

µs

)
(0,0,0)

II. λv

µv
+ psλv

µs
≤N <

λf

µf
+ λv

µv
+ psµv

µs
N

(
N − λv

µv
− psλv

µs
, λv

µv
, psλv

µs

) (
µf

θf

[
λf

µf
+ λv

µv
+ λvps

µs
−N

]+
,0,0

)
III. λv

µv
≤N < λv

µv
+ psλv

µs

(
0, λv

µv
,N − λv

µv

) (
λf

θf
,0, 1

θs

(
λvps−µs

(
N − λf

µv

)))
IV. N < λv

µv
. (0,N,0)

(
λf

θf
, λv−µvN

θv
, psµv

θs
N
)

B.2. Case 2a: Rv,f <Rf (Rv <Rs)

In this case we consider the three sub-cases described in Table 4. For each sub-case we

prove that the globally asymptotically stable equilibrium q̄f , q̄v, q̄s is as it appears in the

table. In the case where Rv,f <Rf (Rv <Rs), the R rule prioritizes Class s and Class v

and then Class f .

Table 6 Optimal solution – Case 2a.

Sub-case (z̄∗f , z̄
∗
v , z̄

∗
s ) (q̄∗f , q̄

∗
v , q̄

∗
s )

I.
λf

µf
+ λv

µv
+ psλv

µs
≤N

(
λf

µf
, λv

µv
, psλv

µs

)
(0,0,0)

II. λv

µv
+ psλv

µs
≤N <

λf

µf
+ λv

µv
+ psλv

µs

(
N − λv

µv
− psλv

µs
, λv

µv
, psλv

µs

) (
µf

θf

[
λf

µf
+ λv

µv
+ λvps

µs
−N

]+
,0,0

)
III. N < λv

µv
+ psλv

µs
.

(
0, µs

psµv+µs
N, psµv

psµv+µs
N
) (

λf

θf
, 1
θv

(
λv −µv µs

psµv+µs
N
)
,0
)

Except for sub-case I, where there is enough capacity to serve all customers, the other

sub-cases allocate capacity to Classes v and s while keeping a constant ratio between the

capacities. Lastly, if some capacity remains, it is allocated to Class f . This is in line with

the R rule in this case (i.e., the two-step R rule). Q.E.D.
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