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The service sector is an indisputable and fundamental pillar of today’s business world, encompassing nearly

80 percent of the workforce in the United States. Service operations management has been a fertile research

area addressing strategic, tactical and operational challenges related to service systems. Such problems

usually have a complex, dynamic stochastic nature, often leading to models that are both analytically and

computationally complicated. In such cases, fluid deterministic models that approximate the dynamics of

stochastic/queueing systems can yield accurate and tractable optimization formulations. These formulations

enable the construction of intuitive, insightful policies that are implementable in practice, even in time-

varying systems. This paper focuses on the applicative aspects of fluid models in addressing various problems

in service and healthcare operations management. We review the literature on fluid model applications,

discuss the situations in which fluid models are less adequate as well as the implementation of a fluid-based

policy into a stochastic discrete system. Lastly, we identify future research opportunities and challenges that

have yet to be addressed.

Key words : queueing systems, service/healthcare operations management, assymptotic analysis,

Functional Strong Law of Large Numbers

1. Introduction

Service systems constitute an integral part of the world’s economy and people’s daily lives. Such

systems are usually characterized by complex, stochastic, dynamic networks that involve multiple

server pools and customer classes. Addressing operational management problems can, therefore,

be highly complicated and lead to intractable models. In such cases, fluid frameworks can yield ac-

curate manageable approximations usable for optimizing system performance, allowing us to glean

structural operational insights and develop easy-to-implement policies. In fluid models, entities

that go through the system are animated as continuous deterministic fluid. These approximations

allow the system’s dynamics to be captured by a set of differential equations that are intuitive and

much more analysis-convenient than their stochastic counterparts.

Additionally, many-server time-varying fluid models, which approximate under, over and criti-

cally loaded stochastic systems, provide an excellent fit to the average transient behavior of time-

dependent stochastic systems. There is ample literature justifying the assertion that fluid models
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accurately approximate their underlying stochastic systems under the “right” operational-limiting

regime [96, 97, 120, 133, 83, 135, 110, 89, 92]. In this paper, however, we focus on the applications

and potential of fluid models in addressing operational management problems in service systems.

That is, we look at how fluid models can be used, in practice, to model, control and optimize the

performance of such systems.

Since fluid deterministic models allow an accurate, simple yet realistic perception of stochastic

discrete systems, they have been successfully used to model different types of service systems.

These models cover the early applications for post offices and social security offices [108, 130],

transportation and ride-sharing services [128, 30, 109], call centers [56, 7, 1] and healthcare systems

[139, 54, 13, 73].

The very basic deterministic fluid model (Figure 1) refers to the system as a black box having a

single input and a single output: an arrival rate function λ(t) and a departure rate function δ(t),

t≥ 0.

System
���� ����

Figure 1 A black box illustration with a single input and a single output.

In this model, the stochastic arrival and departure processes are approximated by continuous

deterministic functions in which customers are modeled as fluid flow. Let q(t) denote the fluid

content in the system at time t. The rate of change in the number of customers in the system at

time t is given by the following differential equation:

q̇(t) = λ(t)− δ(t)

or equivalently,

q(t) = q(0) +

∫ t

0

[λ(s)− δ(s)]ds, t≥ 0,

where q(0) is the initial number of customers in the system at t= 0.

As we demonstrate below, the departure rate δ(t) is constructed based on the system’s char-

acteristics: its configuration (e.g., a single station or a complex network of stations), the service

distributions, the number of servers in each station/pool, and whether the system is time-varying or
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stationary. Moreover, the explicit formulation for q needs to assure that q(t)≥ 0, for every t≥ 0. In

equilibrium, the number of customers in the fluid model remains constant and, therefore, q̇(t) = 0.

Note that while most fluid models are continuous in time, there are several papers that consider

discrete-time fluid models (e.g., [135, 142])

The remainder of the paper is organized as follows. We conclude this section by briefly overview-

ing some early applications of fluid models. In Section 2, we present the two main viewpoints of fluid

applications: a tool for stability establishment and models in their own right. Thereafter, we discuss

the two most common asymptotic regimes studied in the literature: conventional and many-server

heavy-traffic. In Section 3, we demonstrate the construction of time-varying fluid models. Sections

4–8 review the literature on applications of fluid models in the area of service operations and

management. We chose to organize these sections according to their main motivating application;

specifically, call center operations: staffing scheduling and routing problems, healthcare operations

management, matching queues, organ transplantation, ride-sharing systems, delay-informed queue

access, customer acquisition and retention. In Section 9, we discuss the cases where fluid models

might not be effective and ways to translate a fluid-based policy back into the original stochastic

system. Lastly, in Section 10, we provide concluding comments and suggest opportunities for future

research.

1.1. Early Applications of Fluid Models

One of the first applications of the fluid approach was suggested by Oliver and Samuel [108] for

analyzing mail sorting procedures in post offices in order to reduce delivery delays. The optimal

processing rates at each station were found by optimizing a deterministic model of network flow.

The suggested solution was implemented in a large post office in the United States and reduced

letter delays by 25%.

Vandergraft [130] utilized a fluid approach for analyzing time-varying networks in a district office

of the social security administration. Staffing levels at each station need to match the variability of

daily claim arrival rates. The network flow was modeled by a set of differential equations describing

the rate of change in the number of customers at each station at any time. The equation set was

then solved numerically, and performance measurements (such as productivity, resource utilization

and waiting time) were evaluated.

Another early application of fluid models was suggested by Porteus [116, 117, 118] for analyzing

the operations of the National Cranberry Cooperative. The main two problems that required

improvement were extremely long queues of trucks waiting to unload the fruit they carried and

high overtime costs due to the heavy burden of work. Using deterministic flow analysis of the
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process network (berries flow continuously and at a constant rate throughout the process) together

with inventory build-up models, the bottlenecks were identified and improvement alternatives were

suggested (e.g., seasonal starting times and staffing levels). Although the deterministic fluid model

neglects the stochasticity of the system, the analysis and suggestions were shown to improve the

system performance significantly.

Several early applications of fluid models were offered in the context of airport terminal op-

erations, such as analyzing arrival immigration control, check-in counters, and departure lounge

capacity [126, 111, 88, 128, 48]. Horonjeff et al. [72] developed a fluid deterministic model for an-

alyzing baggage claim facilities in terminals. They considered two flows – passengers and baggage

– arriving at the service facility. The two flows are merged into a single departure flow after each

passenger finds and takes their bags. For earlier fluid applications we refer readers to Mandelbaum

and Zeltyn [101] who surveyed a service engineering course, taught at the Technion–Israel Institute

of Technology. Influenced by Hall [64], the course teaches fluid models before stochastic models

and by doing so emphasizes science-based applications.

2. Ways of Viewing Fluid Applications

One basic requirement from an approximating model is that it accurately describe the dynamics and

performance of the system it approximates. There is a broad stream of research that includes the

development of fluid models for different settings in order to evaluate and optimize performance. In

that context, there are two ways of understanding fluid applications. The first [43] sees fluid models

as a tool for establishing stability of their underlying stochastic systems. The second viewpoint

[97, 91] states that fluid models are stand-alone, often first-order models that provide most of the

insight needed. In what follows, we elaborate on each of these viewpoints.

Dai [42] proved that a Stochastic Processing Networks (SPN) is stable (i.e., its ambient Markov

chain is positive recurrent), if the fluid limit of the SPN is stable; that is, the corresponding fluid

limit model reaches zero and stays there regardless of the system’s initial state. The importance

of this result lies in its application simplicity when compared to working directly within/on the

stochastic model. Practical usage of this result and more applications are discussed in Dai and

Harrison [43].

As fluid models have become more common in operations research literature, more and more

papers do not rigorously develop the fluid models as limits for corresponding stochastic systems,

but rather posit the fluid model as is. As Liu and Whitt [91] pointed out: “It is important to

recognize that the fluid model can be considered directly as a legitimate model in its own right”.

For example, Hall [65] used a fluid approach to model and analyze patient flow through a healthcare

system so as to reduce delays and improve healthcare delivery.
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Newell [105] and Hall [65], who established fluid approximating models for service systems,

based their work on the analogy to transportation systems. They distinguished between two types

of queues/variations: deterministic (predictable) and stochastic. The former can describe known

variations throughout the day or day of the week, while the latter is caused by random varia-

tions around averages. The fluid model is a deterministic one and, thus, captures the first type of

queues/variations (i.e., the first-order mean of the system’s dynamics). Neglecting the second type

is justified when the variations around the averages are relatively small compared to the averages.

For instance, when the arrivals follow a Poisson process with rate Λ(t), the coefficient of variance,

1/
√

Λ(t), decreases as Λ(t) increases. In other words, the variations relative to the mean become

smaller. This phenomenon allows fluid deterministic models to be accurate approximations of the

system’s average behavior. Refining the fluid models to capture the stochastic variations around

the average is achievable through diffusion models.

2.1. Limiting Regimes

The above two ways of understanding fluid applications are also related to the different limiting

regimes under which fluid models are derived. Indeed, fluid models are limits of corresponding

stochastic systems, which are established by considering a sequence of properly scaled stochastic

systems and using the Functional Law of Large Numbers. Two main asymptotic regimes are studied

in the literature: the conventional heavy traffic regime and the many-server heavy traffic regime.

Conventional heavy traffic. Under this regime, the time is scaled up (which is equivalent to

scaling up the arrival and service rates), while the number of servers is held fixed [132, Section 5].

Under this scaling regime, service times are instantaneous and almost all arriving customers

have to wait for service. This brings up questions of how to prioritize customers when servers free

up [67, 123, 100]. Moreover, since service times are negligible under this scaling, such fluid models

can support general service-time distributions. In other words, the time in the system is the time

in the queue.

Consider a single-server queueing system where the arrival and service processes are renewal

processes with finite mean 1/λ and 1/µ, respectively. The arrival process {A(t), t ≥ 0} and the

service process {S(t), t≥ 0} are scaled so that

Ān(t) =A(nt)/n→ λt, S̄n(t) = S(nt)/n→ µt u.o.c, as n→∞.

Let Q(t) denote the number of customers in the stochastic system at time t. Space is scaled down

by considering the fluid-scaled process Q̄n(t) := Qn(nt)/n. Then, Q̄n(t)→ q(t) as n→∞ where
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q(t), t≥ 0, denotes the total fluid content in the system at time t. Given the initial condition, q(0),

we have (see Section 6.3 in Chen and Yao [39, Section 6]):

q(t) = [q(0) + (λ−µ)t]
+
.

That is, if λ < µ, the fluid content will eventually reach zero and stay there. If, however, λ > µ,

the fluid content will grow at rate λ−µ. If λ= µ, the fluid content will stay constant at the initial

level.

Other fluid models were developed under conventional heavy traffic. For example, Mandelbaum

and Massey [95] analyzed the Mt/Mt/1 queue with time-varying arrival and service processes. The

key insight in this paper is that the fluid model determines the operational regime: Positive implies

over-loaded; zero requires information from the reflection-term in order to decide if the system

is underloaded or critically loaded. The main challenge arises from the need to analyze regimes

that are changing in time. The time-varying traffic intensity is a way of decoding which regime

prevails. Whitt [138] developed heavy-traffic limits under conventional scaling for the Gt/GI/N

queue with a periodic arrival process. Fluid models under conventional heavy traffic were also

developed for queueing networks [132, 39]. In general, due to the type of scaling, conventional

heavy traffic approximations are less effective in underloaded situations [8]. For further technical

background on stochastic-process limits and fluid approximations, we refer readers to Whitt [132,

Section 5] and Chen and Yao [39, Section 6].

Many-server heavy-traffic regime. Under this regime, the arrival rates and the number

of servers are scaled up to infinity, while the service rates are held fixed. As such, the many-

server approximation is adequate for large systems. Such approximations might also work well for

single-digit staffing [29, 139] because of the fast rate of convergence [81]. The many-server heavy-

traffic regime is useful for analyzing transient and time-varying systems. Moreover, as opposed to

conventional heavy traffic, service rates are not scaled, hence service times and their distribution

are significant.

Consider the Mt/M/N system having Poisson non-homogeneous arrivals with rate λ(t), expo-

nential service times with average rate µ and N servers. Next, we introduce a sequence of stochastic

systems indexed by η > 0, η→∞. In the η-th system, the number of servers is scaled to ηN , and

the arrival rate is scaled: Aη = {ηA(t), t≥ 0}, so that

{Aη(t)/η, t≥ 0}→
{∫ t

0

λ(u)du, t≥ 0

}
u.o.c. as η→∞.

The space is scaled down by considering the fluid-scaled process Qη(t) :=Qη(t)/η. Then, Qη(·)→
q(·) as η→∞, where q(·) is the unique solution to the following differential equation:
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q(t) = q(0) +

∫ t

0

[λ(s)−µ (q(s)∧N)]ds,

where q(t)∧N = min(q(t),N) denotes the number of occupied servers at time t.

Mandelbaum et al. [96, 97] established the foundations of fluid approximations for modeling

time-varying queueing systems with abandonment and retrials, where inter-arrival times are expo-

nentially distributed, hence the number of arrivals in an interval is Poisson; service, abandonment,

and retry rates are exponential. These works allow the analysis of time-varying systems within

specific regimes or operations, rather than forcing researchers to use simulation or piecewise con-

stant stationary analysis. Different variations and extensions were developed under the many-server

heavy-traffic regime: general distributions and abandonments [134, 135] and systems with multi-

ple customer classes and multiple service pools [124]. More general many-server heavy-traffic fluid

models were developed by [89, 90, 91, 60, 139, 92, 143, 54]. Within the framework of Resource-

Driven Activity Networks (RANs), Carmeli et al. [31] developed a fluid model for closed networks

in the many-server heavy-traffic regime.

Fluid models for long service times. The analysis of fluid models for systems with long

service times must be distinguished from the analysis of systems with short service times. When

service times are short, departures from the queue and departures from the system are very close

and can be considered the same. When service times are long, however, there is a delay between

these two departures. Specifically, let Ā(t) denote the cumulative arrivals to the system in the

deterministic fluid approximation. Additionally, let D̄q(t), D̄s(t) denote the cumulative departures

from the queue and from the system, respectively. In the deterministic fluid approximation, we

have D̄−1s (n) = D̄−1q (n) + 1/µ. In systems with long service times compared to waiting times, this

delay is not negligible. Thus, Hall [64] suggested the following construction of both deterministic

accumulated departures:

D̄s(t+ 1/µ) = D̄q(t); D̄q(t) = min
(
Ā(t), D̄s(t) +N

)
.

The first condition describes the delay caused by the service time: A customer who departs the

queue and begins service at time t will depart the system at time t+ 1/µ. The second condition

states that as long as there is no queue, the departure rate from the queue equals the arrival

rate, since service starts immediately upon arrival. When the queue begins to form, all N servers

work and the total number of customers that departed from the queue equals the total number

that departed from the system plus the N customers in service. The vertical distance at time t

between the cumulative arrivals and the cumulative departures from the queue (from the system)

represents the fluid content in the queue (system) at time t. Hall’s suggested method applies also
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Figure 2 Two models illustrating abandonments, retrials, and blocking.

to many-server systems where service times do not become negligible in the limit. Long general

service times in many-server queues were addressed by Carmeli et al. [31] under a transient finite

horizon.

3. Constructing Time-Varying Fluid Models for Queueing Systems

The fluid model for a queueing network is characterized by a set of differential equations (one for

each station) that describes the rate of change in the number of customers in each station at any

time. These models can be built directly from systems/data (rather than as approximations). We

demonstrate the construction of these equations using the two examples illustrated in Figure 2. We

start with Model A, which was developed in Mandelbaum et al. [97] for a time-varying multiple-

server queue with memoryless service times, abandonments and retrials. That is, some customers

waiting in the queue give up, i.e., abandon; some retry later if the service is important to them.

Specifically, we have service Station 1, and a retrial pool with infinite capacity for all customers

who abandon the queue and may potentially retry. The model is characterized by the following

(deterministic) parameters:

1. Exogenous arrival rate λ(t), t≥ 0, to Station 1.

2. Service rate µ1(t)> 0 at Station 1 at time t.

3. Retry rate µ∞(t)> 0 in the retrial pool at time t.

4. Number of servers N1(t) in Station 1 at time t.

5. Abandonment rate θ(t) in the waiting room before Station 1 at time t.

6. Probability of no retry ψ(t) at time t.
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Let the functions q1, q∞ denote the number of customers in Station 1 and in the retrial pool,

respectively, according to the fluid model. Given initial conditions, q1(0), q∞(0), these functions are

the unique solution of the following non-linear differential equations:

q̇1(t) = λ(t) +µ∞(t)q∞(t)−µ1(t)(q1(t)∧N1(t))− θ(t) (q1(t)−N1(t))
+

; (1)

q̇∞(t) = θ(t)(1−ψ(t))(q1(t)−N1(t))
+−µ∞(t)q∞(t),

where (x∧ y) = min(x, y) and x+ = max(x,0). Each equation is basically the total input minus the

total output from each station at time t.

The development in [97] is based on the many-server heavy-traffic regime where the arrivals and

the number of servers are scaled up to infinity, while the distribution of service duration (or service

rate) is held fixed.

Next, we move to Model B in Figure 2, which presents a more complicated version of Model

A with another service station, Station 2, located after Station 1. Station 2 has N2 servers; if a

customer completes service in Station 1 and there are no available servers in Station 2, the customer

is blocked while occupying a server in Station 1. Following [143], we define x1(t) as the number of

customers that arrived at Station 1 up to time t and have not completed their service there; b(t) is

the number of blocked customers in Station 1 at time t. Lastly, x2(t) is the number of customers

that have completed service in Station 1 but have not completed service in Station 2 up to time t.

We thus have

b(t) = (x2(t)−N2(t))
+
.

Given initial conditions, x1(0), x2(0), the functions x1, x2, b are the unique solution of:

ẋ1(t) = λ(t) +µ∞(t)q∞(t)−µ1(t) (x1(t)∧ (N1(t)− b(t)))

− θ(t) (x1(t) + b(t)−N1(t))
+

;

ẋ2(t) = µ1(t) (x1(t)∧ (N1(t)− b(t)))−µ2(t)(x2(t)∧N2(t)); (2)

q̇∞(t) = θ(t)(1−ψ(t)) (x1(t) + b(t)−N1(t))
+−µ∞(t)q∞(t).

Here, (x1(t)∧ (N1(t)− b(t))) is the number of customers in service in Station 1 at time t (i.e.,

the total number of customers occupying a server in Station 1 excluding the number of blocked

customers).

The total number of customers in each station at any time t is given by

q1(t) = x1(t) + b(t); (3)

q2(t) = x2(t)∧N2(t).
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Note how low the barriers are for applications. The equations can easily be solved numerically

even in a spreadsheet via discretization of time (or using any high-level software such as MATLAB

of Python).

Next we use simulation to evaluate the performance of the fluid model. We plot how the average

number of customers in each system evolves over time for systems that start empty. This provides

a copious amount of details about the system dynamics. Figure 3 compares the total number of

customers in each station over time according to the fluid model (Equations (2)–(3)) and according

to a simulation model of the corresponding stochastic system. In the latter, the arrivals were

samples from a non-homogeneous Poisson process; service times were samples from exponential

distributions. We consider two system sizes. In the first (top plots), N1 = 30, N2 = 50 and the

arrival rate is λ(t) = 0.3t, 0≤ t≤ 80; the second system (middle plots) is half the size of the first

(i.e., N1 = 30, N2 = 50 and the arrival rate is λ(t) = 0.15t, 0≤ t≤ 80); the third system (bottom

plots) has N1 = 8, N2 = 17 and the arrival rate is λ(t) = 0.08t, 0≤ t≤ 80. The simulation results are

averages that were estimated based on 10 (left plots) and 150 (right plots) independent replications.

In sum, the fluid model accurately describes the average flow of customers in the stochastic

system. As expected, the fluid approximation becomes more accurate as the number of replications

increases, and as the system grows in size. Nonetheless, even when the system is relatively small

(N1 = 8, N2 = 13), the fluid model describes the average behavior of the system well.
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Figure 3 Total number of customers in each station – fluid model vs. simulation. The simulation results are

averages that were estimated based on 10 (left plots) and 150 (right plots) independent replications.

The parameters are µ1 = 1/8, µ2 = 1/16, in the top plots, λ(t) = 0.3t, 0 ≤ t≤ 80, In the middle plots,

λ(t) = 0.15t, 0 ≤ t≤ 80 and in the bottom plots, λ(t) = 0.8t, 0 ≤ t≤ 80.
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Fluid Model Applications

In the following sections we review the main applications of fluid models that are used to address

various problems in service operations management. We chose to organize these problems according

to their main motivating application, though we note that some problems are relevant to more

than one application. We start with applications that are motivated by call center operations,

which stimulated the development of fluid models; specifically, staffing, scheduling and routing

problems (Section 4) – all of which constitute a major part of the service operations literature.

Then, we move on to applications in healthcare operations managements (Section 5). Section 6

covers applications related to matching queues and, specifically, organ transplant and ridesharing

systems. Then, we discuss fluid-based models of delay-informed queue access (Section 7). Lastly,

we review the applications related to customer acquisition and retention (Section 8).

Remark 1 Various applications of diffusion models in service operations management exist in the

literature. For example, there are staffing [63, 131, 57, 137, 21], scheduling [129, 100, 68, 74, 93],

routing [9, 62, 12, 18, 99] as well as joint optimization [16, 61, 127, 23, 58, 10] problems. To remain

focused on fluid model applications, we do not cover these valuable works and their significant

contribution to the field.

4. Call Center Operations: Staffing, Scheduling and Routing Problems

Call centers have been a fertile ground for research in the operations management area [56, 7].

Most operational challenges faced by call centers boil down to staffing, scheduling and routing

problems – all tightly intertwined. These dependencies impose additional challenges beyond those

that arise when addressing each problem separately. Exact analysis of such stochastic settings

is analytically/computationally complex and often intractable. The goal then becomes to find

good, structurally simple solutions that are both near optimal and asymptotically optimal as the

system’s scale increases. Fluid approximations are desirable in that sense because they often enable

the formulation of tractable optimization problems [136]. In what follows, we review the relevant

approaches for each problem.

4.1. Staffing and Capacity Planning

Setting staffing requirements is essential when designing and managing service systems. The staffing

decision specifies the number of agents needed during each staffing interval over the day. In many

realistic cases (e.g., many-server queues, nonstationary and/or general distributions and aban-

donments), deriving insightful practical staffing decisions is possible only through heavy-traffic

approximations. One common approach for setting staffing requirements is based on the offered
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load approximation (i.e., an infinite-server queue). The offered-load represents the average amount

of work being processed by resources, under the assumption of an infinite number of resources.

The known square-root safety staffing formula is obtained by setting N =R+ β
√
R, where N is

the required number of servers and β is a parameter reflecting the quality of service in terms of

delay and congestion [131]. The applicability of fluid models in setting staffing requirements under

an uncertain arrival rate and agent absenteeism was discussed in [135, 137].

The above staffing problems focus on a single homogeneous server pool. In multi-skill settings,

however, servers have different skills, and customers have different service requirements. Harrison

and Zeevi [69] used stochastic fluid models to study a staffing problem of different agent pools in a

setting with different customer classes, each with an instantaneous arrival rate that is time depen-

dent and varies stochastically. By considering the trade-off between staffing costs and abandonment

penalties, and using stochastic fluid models, the staffing problem is reduced to a multidimensional

newsvendor problem. Following this work, Bassamboo, Randhawa and Zeevi [25] studied a capac-

ity sizing problem in a multiple-server service system where customers may renege while waiting

for service. The paper focused on the impact of uncertainty (caused by arrival rate prediction) on

capacity planning. The authors identified two regimes, each requiring a different solution approach.

The first is an uncertainty-dominated regime, where uncertainty effects dominate stochastic fluctu-

ations. In this case, the stochastic fluctuations can be ignored and a suitable newsvendor problem

(such as in Harrison and Zeevi [69]) can be used. The second regime the authors identified is a

variability-dominated one, where stochastic fluctuations dominate uncertainty effects. In this case,

the square-root approach that incorporates a capacity safety buffer is more adequate. The “right”

regime is decided upon according to a threshold policy for the coefficient of variation.

Other versions of staffing problems were addressed using fluid models. Aguir et al. [4, 3] used

a fluid model to study the effect of retrials on the performance of call centers. Using numerical

analysis they demonstrated how misleading it is to consider retrials as first-time calls, and how this

practice affects forecasting and staffing decisions. Ren and Zhou [119] used a fluid approximation

model to study the operations in call centers that are outsourced to other companies. Staffing levels

and exertion effort are determined in order to improve service quality (i.e., number of calls that

are served and resolved). Gurvich, Luedtke and Tezcan [59] studied the staffing of call centers with

uncertain demand forecasts. Yom-Tov and Mandelbaum [139] addressed staffing questions for the

Erlang-R model with re-entrant customers.

Staffing flexible (contractors) and/or fixed (full-time) agents in service systems was studied by

Dong and Ibrahim [52]. Using fluid and stochastic fluid models, the optimal staffing policy to

minimize operating costs under varying customer demand patterns was derived.



14

In a long-term planning horizon, managers need to set the system capacity. This usually involves

hardware decisions, for example, setting the required number of agent positions in a call center.

Such decisions involve demand forecasting and trade-off considering the proper balance between

operating costs and service quality (e.g., waiting times). Jennings, Massey and McCalla [82] used

fluid approximations to optimize the number of leased private lines in a telecommunication setting

to maximize profit. Because of very long service times (measured in years), their analysis is tran-

sient; indeed, the system does not reach steady state within the observation period. Bassamboo

and Randhawa [24] studied the accuracy of fluid models for capacity sizing of queueing systems

where customers abandon according to a general patience distribution. They derived prescriptions

that are asymptotically optimal for large customer arrival rates, and showed that as the customer

arrival rate increases, the optimality gap of the prescription remains bounded.

4.2. Scheduling

A scheduling problem determines how to assign waiting customers to a server/server pool upon

completion of a service. The cµ rule (Cox and Smith [41]) for scheduling a multiclass single server

queue when holding costs are linear was shown to be optimal.

Atar, Giat and Shimkin [17] derived the asymptotic optimality of an index-based policy, known

as the cµ/θ rule, for many-server queues with abandonment in the overloaded regime. Zychlinski,

Chan and Dong [142] studied the scheduling of queues with different resource requirements. They

derived the idle-avoid cµ/m rule, where m is the number of servers each class requires. For general

multi-class multiserver queues, where exact analysis becomes prohibitively tedious, the asymptotic

optimality of the rule is established in the many-server regime.

Dobson, Tezcan and Tilson [50] used a fluid model to study the scheduling of new customers and

customers that are already in the system. The service process includes three steps conducted by two

resources where service might be interrupted by other customers in the system. They show how the

interruptions effect the optimal prioritization and the system’s throughput. Dong and Ibrahim [53]

studied the shortest-remaining-processing-time (SRPT) scheduling policy in multiserver queues

with abandonment. They showed that from among all scheduling disciplines, the SRPT discipline

maximizes, asymptotically, the system throughput.

4.3. Routing

A routing problem in a multi-skill setting is also known as skills-based routing [56]. Since exact

analysis of stochastic routing problems is challenging and complex, fluid approximation models are

a useful tool to derive insightful implementable policies. Motivated by tenant assignment models in

public housing, Talreja and Whitt [124] used fluid models to determine the stationary routing rates

between customer classes and service pools in overloaded queueing systems. The routing flow rates
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are derived for different network routing graphs. By analyzing a fluid approximation model, Perry

and Whitt [114, 115] proposed a fixed-queue-ratio (FQR) routing policy for a two-class and two-

server pool (X-model) to address unexpected overload. The proposed FQR policy has thresholds

that automatically detect class overload.

Mandelbaum and Momčilović [98] used a fluid model to study personalized queues where infor-

mation at the level of individual customers/servers affects system dynamics. To understand the

benefits from personalized customer information, the authors compared the personalized least-

patience first (LPF) routing policy with FCFS. They found that LPF is significantly better when

the overloaded durations are comparable to (im)patience times.

Routing and Staffing. Staffing is closely related to routing when agents have different skills.

Bassamboo, Harrison and Zeevi [23] addressed both problems in a call center model with mul-

tiple customer classes and multiple server pools. The model has instantaneous arrival rates that

vary both temporally and stochastically. To minimize the sum of staffing costs and abandonment

penalties, a new asymptotic parameter regime is developed. In this regime, service rates and aban-

donment rates are accelerated in a linear manner, while arrival rates grow super-linearly. The key

feature of this two-scale parameter regime is that the dynamic control problem becomes tractable.

As a solution, the authors suggested a linear-programming based method for staffing and routing,

which is asymptotically optimal.

5. Healthcare Operations Management

Healthcare systems tend to have complex dynamic processes, which are difficult to analyze directly.

In such cases, fluid models can help capture and analyze decision makers’ key trade-offs. Fluid

models have been used to analytically derive operational insights regarding system dynamics and

performance. Such insights are usually unattainable via exact analysis of the underlying stochastic

systems.

Mills, Argon and Ziya [103] used a fluid model for setting triage priorities among patients in

a mass casualty event (MSE), by considering resource limitations and time-dependent survival

probabilities. In the same context, Cohen, Mandelbaum and Zychlinski [40] used a fluid model

to address resource allocation problems in hospitals between different treatment stations during

MSEs. Fluid models have been used to analyze systems with slowdowns [51] and speedups [35]

that can occur in hospitals as a result of high congestion.

Dai and Shi [45] used fluid control combined with single-pool approximation to study the overflow

phenomenon in hospitals that occurs when, due to excessive waiting times, patients have the

option of being assigned to a non-primary bed. A queueing model for inpatient wards including
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the need for a physician’s approval to discharge patients was studied in Dong and Perry [54] using

a nonstationary fluid model. Motivated by the bed blocking problem within hospital networks,

Zychlinski et al. [144, 143, 145] developed time-varying fluid models for networks with blocking. In

[144] a fluid-based approach was used to determine the optimal number of beds in a long-term care

facility by incorporating blocking costs incurred when there are not enough beds. Chan, Huang

and Sarhangian [33] used a fluid model to study the reassignment of ED nurses to different services

at the beginning of shifts. By analyzing a fluid control problem, the authors minimized transient

holding costs over a finite horizon, and showed that an appropriate “translation” of the solution

to the fluid control problem is asymptotically optimal for the original stochastic system. Recently,

Chan et al. [34] extended the model to incorporate two different phases of care: treatment and

boarding, and two types of nursing staff.

Hu, Chan and Dong [73] used fluid approximation to study the scheduling of proactive services

when less critical patients might deteriorate if their treatment is delayed. In their analysis, they

distinguished between long-run average performance and the transient performance. A fluid model

was used by Armony and Yom-Tov [13] to study the trade-off between infection and mortality risks

when deciding when to discharge hematology patients from hospital.

Yom-Tov and Mandelabaum [139] used a fluid approximation to study the Erlang-R model,

motivated by healthcare systems, in which patients go through a repetitive service process. A fluid

approximation was used by Chan et al. [36] to study service systems with returns in the context

of hospital readmission prevention programs. In their system, there is a cost associated with the

return probability of departing customers. The decision maker can determine this probability based

on the system’s congestion. Zychlinski [141] used fluid approximation to study the scheduling of a

hybrid healthcare system that provides three service channels: in-person, virtual and supplementary

in-person service for virtual patients that require a follow-up in-person visit.

6. Matching Queues: Organ Transplant and Ride-Sharing Systems

Matching problems arise in different applications, such as organ transplants, ride-sharing systems

and public housing, when there is a need to allocate different types of resources to different types

of customers. Because of the complex stochastic nature of such problems, fluid deterministic ap-

proximations become helpful in designing effective allocation policies.

In organ transplant problems, transplant candidates and organ donors need to be matched, in

order to optimize factors such as expected quality-adjusted life expectancy of transplant candidates

(quality-adjusted life-year – QALY), post-transplant survival probability, matching quality, number

of patient deaths, and number of wasted organs (see David and Yechiali [47]).
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Zenios, Chertow and Wein [140] considered the trade-off between clinical efficiency and equity

when designing a dynamic kidney allocation policy. The clinical efficiency is captured by QALY,

while the equity is captured by the transplant likelihood of patient type, and the differences in

mean waiting times across them. By using a fluid model and an approximate analysis of the optimal

control problem, they developed a dynamic index policy that is effective and implementable.

Later on, [5] used a fluid model to study liver transplants and analyzed the trade-off between

medical urgency and efficiency over a finite time horizon. The medical urgency is captured by

the number of patient deaths while waiting for a transplant (NPDWT). Patients waiting in a

queue may abandon the system or switch between classes (when deteriorating or improving). When

considering only the NPDWT criterion (without the clinical efficiency), the current United Network

for Organ Sharing (UNOS) policy is optimal. On the other hand, considering only the efficiency

criterion yields a dynamic index policy that prioritizes patients on the waiting list according to

their potential marginal benefit from transplantation. The work in [5] was extended in [70] who

studied the allocation problem under fairness constraints. The optimal policy of their proposed

fluid model is a dynamic priority rule. More recently, Ata, Ding and Zenios [14] developed a fluid

model to study a kidney allocation problem that considers strategic patients when choosing to

accept or decline an offered organ.

In ride-sharing systems, arriving customers need to be matched with available drivers. Özkan and

Ward [109] used a fluid model to develop dynamic matching for a real-time ride-sharing system.

They proposed a randomized policy, which is based on the solution of a continuous linear program

that incorporates the time-varying different arrival rates of customers/drivers in different city areas,

and the time customers/drivers are willing to wait. The policy was shown to be asymptotically

optimal under fluid scaling. Braverman et al. [30] studied the control of an empty-car routing

problem in a closed queueing network, where the objective is to optimize utility functions such

as the availability of empty cars when a passenger arrives. They proposed an efficient fluid-based

optimal routing policy for empty vehicles in a large market regime.

Ding, McCormick and Nagarajan [49] used a fluid model to study a one-sided bipartite matching

problem with match-dependent rewards. That is, a resource is allocated to the customer with the

highest score, which is calculated as the sum of a customer’s waiting time and matching score.

A two-sided controlled problem arises when, in addition to customers, resources also wait in a

queue. Afeche, Caldentey and Gupta [2] studied the design of a matching topology in a multiclass

multiserver queueing system under a first come first served–assign longest idle server (FCFS–ALIS)

service discipline. The trade-off they considered is between minimizing customers’ waiting time

and maximizing customer–server matching rewards. The risk of losing a waiting customer/resource
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while waiting for a match is considered by Aveklouris et al. [20], who developed a fluid-based

two-sided matching policy under generally distributed customer patience.

7. Delay-Informed Queue Access

Many service providers share delay information with their customers. Sharing such information was

shown to be beneficial. It increases customer satisfaction by reducing undesirable uncertainty, it

enables customers to have increased control over their wait, and it provides customers with a sense

of progress while they are waiting [87, 104, 76]. Delay announcements are then used by potential

customers in order to decide whether to join the system or to balk. Balking customers can be

observed or non-observed by the system operator [80]. Time-varying arrivals and abandonments

while waiting impose additional challenges on delay prediction. A substantial body of research

addresses the challenges involved in effectively managing the provision of delay announcements.

Since large systems are the main focus in this context and direct analysis is prohibitively complex,

deterministic fluid models become a natural effective tool within the many-server heavy-traffic

framework.

Armony, Shimkin and Whitt [11] investigated the effect of delay announcements when the aban-

donments due to the announcements are non-exponential. The authors suggested approximations of

the steady-state performance with delay announcements. One such approximation is based on the

equilibrium delay in a deterministic fluid model, where the expected steady-state delay coincides

with the delay announcement. The fluid model provides useful insights in an overloaded regime,

when delay announcements, according to the authors, are important. Based on the deterministic

fluid model, conditions for customer response are derived to guarantee the existence and uniqueness

of that equilibrium. Moreover, in the fluid model, the LES (Last customer to have Entered Service)

delay coincides with the FD (Fixed Delay) announcement at equilibrium. The authors also showed

that when the abandonment response to the announcements is not smooth, the fluid model may

not be accurate. In such cases, a further refinement through diffusion approximation, as in [75], is

required.

In a series of papers, Ibrahim and Whitt [77, 78, 79] studied the asymptotic accuracy of real-time

delay predictors in service systems with a single class of customers. Using a many-server heavy-

traffic framework, they developed and examined different predictors that are based on either the

queue length or the history of delays for queueing systems with time-varying arrivals, abandon-

ments and general distributional assumptions. In [79], for example, two predictors that exploit a

deterministic fluid approximation for a many-server queueing model are suggested for a system

with a time-varying arrival rate, a time-varying number of servers and customer abandonments.
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In a different series of papers, Pender et al. [112, 113] and Novitzky et al. [106, 107] used

deterministic fluid models to study the effect of providing customers with delayed information.

They showed how delayed information can cause oscillations or asynchronous behavior and produce

unwanted system dynamics. With the goal of evenly distributing the workload among queues, they

analyzed the kind of information that should be provided to arriving customers.

8. Customer Acquisition and Retention

Fluid models have been used to set customer acquisition strategies and revenue maximization.

Ata et al. [15] used fluid models to analyze the expected profit of hospice care. They proposed an

alternative reimbursement policy for the US Medicare system and determined the recruiting rates

of short- and long-stay patients to maximize profitability of the hospice. Afeche, Araghi and Baron

[1] utilized a fluid model for setting customer acquisition investments and bottleneck capacity

allocation to maximize the profit of service firms. Specifically, they addressed the questions of how

much to spend on customer acquisition, how much capacity to deploy, and how to allocate capacity

and adjust service access quality levels in line with different customer types. Recently, Furman,

Diamant and Kristal [55] focused on the trade-off between acquisition and retention efforts when

customers are sensitive to service quality. The model, which is a multi-class queueing network with

new and returning customers, time-dependent arrivals, and abandonment, is approximated by a

fluid model. The model is used to determine optimal stationary staffing levels for new and returning

customers.

Savin et al. [121] used a fluid approximation model to study capacity allocation decisions in a

rental-equipment system with two classes of customers. Upon a customer’s arrival, the system’s

controller decides whether to admit the customer for service (given that there is available capacity)

or to reject the arrival. Based on the fluid model, they developed heuristic capacity allocation

policies and obtained closed-form expressions for the heuristic’s control parameters. Akan and Ata

[6] considered a continuous-time stochastic fluid model of network revenue management. They

showed that when the volume and capacity are sufficiently large, the revenue management systems

can be approximated by fluid models and that the optimal bid-price processes are martingales in the

stochastic fluid models. Dai, Kleywegt and Xiao [44] studied airline network revenue management

problems with customer cancellations and no-shows. Their goal was to optimize booking policies in

an independent-demand model and a choice-based one. Using a fluid model, they derived a policy

that is asymptotically optimal when the arrival rates become high and the seat capacities become

large.
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9. Translation of the Fluid Solution Back to the Stochastic System

Fluid models are deterministic continuous approximations of underlying discrete stochastic sys-

tems. Under the limiting regime where the approximation is valid, the fluid model can be extremely

accurate. Specifically, conventional heavy-traffic regime accurately approximates heavily loaded

systems (i.e., when traffic intensity approaches 1); many-server heavy-traffic regime accurately ap-

proximates large systems with high arrival rates and many servers. When these conditions are not

met, the fluid approximation can be inaccurate. This may lead to poorly performing polices, and

even instability when implemented straightforwardly. Moreover, since fluid models are continuous,

a translation mechanism is needed to reinstate the fluid solution into the original discrete stochas-

tic system. The translation mechanism needs to guarantee stability and good performance of the

stochastic system; it also needs to be asymptotically optimal in the relevant scaling regime.

Harrison [66] suggested a general translation mechanism, the BIGSTEP approach for dynamic

control of stochastic networks. Harrison [67] implemented the BIGSTEP approach to schedule a

simple N-model with two stations and two classes of customers. In particular, a discrete-review

control policy (i.e., system status is reviewed at fixed-length intervals and decisions are made for the

next interval) was constructed and proved to be asymptotically optimal in the heavy traffic limit.

This approach was extended in Maglaras [94] who proposed a class of discrete-review policies based

on repeatedly solving fluid relaxation problems. Specifically, the status of the system is reviewed

at discrete time points; then, the system operator formulates a processing plan for the next review

period to best track the fluid control policy at that point. Within each period only customers that

were present at the review time point are allowed to be processed. The implementation of a discrete-

review policy requires the usage of safety stocks (i.e., thresholds on the number of customers of each

class at the end of the period) to prevent undesirable idleness when some classes get depleted. These

safety stocks are asymptotically negligible (i.e., under fluid scaling). Maglaras [94] also proved the

stability of these discrete-review policies and established their fluid-scale asymptotic optimality.

Bertsimas, Gamarnik and Sethuraman [28] suggested an efficient asymptotically optimal algo-

rithm for rounding an optimal fluid solution to the job-shop scheduling problem, where the fluid

relaxation is solved once. The authors also provided an explicit convergence rate to optimality.

Other more specific translation mechanisms of fluid solutions to discrete near-optimal scheduling

policies were suggested in [38, 19, 102, 46, 33].

10. Concluding Remarks and Future Opportunities

The stochasticity and complexity of service systems encourage researchers to look for useful effective

approximations to gain insights and optimize system performance. Such approximations need to

be accurate in describing the average performance of the corresponding stochastic systems; they
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also need to be manageable in terms of analysis and derivation of simple yet insightful policies.

Fluid models provide a useful framework for such approximations and have, therefore, been used

to address a variety of problems in the area of service operations management.

We identify several future directions in which fluid models have the potential to capture and ex-

plore important phenomena in service and healthcare systems. Most existing network applications

are based on common assumptions of independency between service stations, service times and

system state as well as outcomes. In healthcare systems, the latter refers to readmissions, service

times of readmitted patients and mortality. There is, however, a reasonable amount of empirical

evidence that shows that dependency prevails in many service, healthcare and transportation sys-

tems [37, 84, 85, 122, 26, 27, 125, 32, 22]. For instance, transferring patients earlier than necessary

to the next station or keeping patients blocked due to lack of availability in the next station is likely

to affect their healthcare outcomes. Moreover, readmitted patients are likely to arrive in a worse

condition than when first admitted that will necessitate longer hospitalization. Therefore, such

dependencies need to be taken into account carefully. Another relevant example regards COVID

controls: to maintain spacial distancing, downstream status (e.g., long queues) affected upstream

decisions (e.g., strategic idling). Similar dependency also prevails in other service systems such as

call centers, product development centers, white-collar work systems [71], and even in production

systems. Capturing such dependencies through exact analysis of the stochastic network will likely

lead to models that are intractable either analytically or computationally. Using fluid approximat-

ing models, in contrast, is more promising and can uncover the dependencies’ effect on optimal

decision making.

Another dependency that calls for further exploration is observed when longer service times in

one station lead to shorter service times in the next station and vice versa. For example, in a

healthcare setting (e.g., ICU and inpatient wards or inpatient wards and rehabilitation institutes),

a shorter stay in one station can be compensated for by a longer stay in the next one [86]. On the

other hand, a longer stay in one station may allow shortening the stay at the next station. Similar

dependencies also prevail in maintenance-repair systems or systems with preventive maintenance.

Developing fluid models that capture and optimize such a balance is both an interesting and

important research direction.

Another research direction involves the embodying of dependencies between service times

and an individual’s state. Although there is a body of literature that focuses on developing

fluid models for general service distributions, most existing applications are based on common

assumptions of memoryless service times. Moreover, most fluid models take a “bird’s eye view”

and are thus unable to depict and control individual progression through the system. This calls
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for the development of fluid models that capture both the individual’s state and the system state.

In a healthcare setting, the individual’s state refers to the patient’s health condition. Providing an

underlying mechanism that monitors the individual’s state in time throughout the network can

promote the construction of fluid models in two dimensions: state and time. Such a mechanism can

facilitate the analysis of more complex realistic systems and help address questions of control on

a finer scale. For example, future fluid models should seek to answer questions such as what state

determines that customers/patients should be transferred from one station to another, what state

indicates that customers/patients should be returned/readmitted, and how do these decisions

change under congestion and blocking that occurs when, due to congestion at the next station,

available customers cannot be relocated. Other promising directions include the incorporation of

dependencies between arrival times and system state or individual waiting/blocking time in one

station and service times or individual state at the next station.
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[144] Zychlinski, N., Mandelbaum, A., Momčilović, P., Cohen, I.: Bed blocking in hospitals due to scarce capacity in
geriatric institutions—cost minimization via fluid models. Manufacturing & Service Operations Management
22(2), 396–411 (2020) 16
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