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ABSTRACT

We study the scheduling of a new class of multi-class multi-pool queueing systems where different classes
of customers have heterogeneous – in terms of the type and amount – resource requirements. In particular, a
customer may require different numbers of servers from different server pools to be allocated simultaneously
in order to be served. We apply stochastic simulation to study properties of the model and identify two
types of server idleness: avoidable and unavoidable idleness, which play important, but different, roles in
dictating system performance, and need to be carefully managed in scheduling. To minimize the long-run
average holding cost, we propose a generalization of the cµ-rule, called Generalized Idle-Aware (GIA)
cµ-rule. We provide insights into how to set the hyper parameters of the GIA cµ-rule. We also demonstrate
that, with properly chosen hyper parameters, the GIA cµ-rule achieves superior and robust performance
compared to reasonable benchmarks.

1 INTRODUCTION

In this paper, we develop a special parallel processing network with multiple types of resources and multiple
classes of customers. Each class of customers can require multiple types and/or multiple units of resources
simultaneously to get served. This model is relevant for many operations management applications. For
example, in healthcare systems, patients are classified based on the level of medical attention/supervision
they require. Each class of patients requires multiple types of resources (physicians/nurses/beds/medical
equipment), as well as, a different amount of each type of resources. In an Intensive Care Unit (ICU), high
acuity patients typically require one dedicated nurse per patient; however, the same nurse can take care of
two to three ICU patients at lower acuity levels (Masterson and Baudouin 2015). We need both a bed and
the required staff to admit a patient. Other examples include emergency services such as firefighting and
police patrol (Altay 2012); manufacturing, and inventory systems (Ramakrishnan and Gannon 2008).

We study the scheduling of the proposed model, with the objective of minimizing the long-run average
holding cost. Due to the complex architecture and dynamics of the proposed network model, very few
analytical results can be derived. In this context, discrete-event simulation is the main tool for performance
evaluation and optimization of these systems (Glynn and Asmussen 2007).

The heterogenous resource requirements pose challenges on managing priority-induced idleness. In
particular, policies that myopically maximize the cost-reduction rate may lead to system instability, even
if the system can be stabilized under some properly designed policies. In this work, we identify two types
of idleness: avoidable idleness and unavoidable idleness. We demonstrate that these two types of idleness
need to be carefully managed to achieve system stability. We then propose a class of scheduling rules that
carefully balance the cost-reduction rate and the two types of idleness. We refer to this class of policies
as the Generalized Idle-Aware (GIA) cµ-rule. Under this policy, the scheduling decision at each event
time can be formulated as an integer max-min problem. By properly choosing the hyper parameters in the
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max-min problem, we can decide how much weight we put on maximizing the instantaneous cost-reduction
rate, and how much weight we put on minimizing the two types of idleness.

Using extensive simulation experiments, we provide insights into how to choose the hyper parameters,
which we refer to as the idle-aware parameters. The numerical results demonstrate the superior and robust
performance of the GIA cµ-rule over naive benchmarks. In addition, when dealing with highly non-
stationary demand, our proposed policy also performs well when considering the cumulative cost incurred
over a finite time-horizon, i.e., transient cost-minimization problems.

1.1 Brief Literature Review

Scheduling parallel processing networks has important implications for various engineering and business
applications, and is a very challenging problem due to the large state-space and policy-space involved
(Papadimitriou and Tsitsiklis 1999). Two classes of methods are commonly used to tackle these problems.
One is asymptotic approximations; see, for example, Mandelbaum and Stolyar (2004). The other is discrete
even simulation; see, for example, Mandelbaum and Feldman (), Ma and Whitt ().

Our work is a direct extension of Zychlinski et al. (2020), which studies a similar parallel processing
network but with only a single type of resource. The extension from a single type of resource to multiple
types of resources is highly non-trivial, as there is no notion over which to differentiate the avoidable
and unavoidable idleness when there is a single type of resource. In Section 3, we demonstrate that a
naive extension of the policy developed in Zychlinski et al. (2020) to our setting can lead to very poor
performance. Multi-class queues where different classes of customers have different resource requirements
are also studied in Green (1981) and Reiman (1991). Green (1981) propose a heuristic scheduling policy
that prioritizes jobs with more resource requirements. Reiman (1991) studies the system with blocking and
develop asymptotic approximations for the blocking probability.

Previous research has shown the importance of managing idleness when scheduling parallel processing
networks (Harrison 1998). Policies that are throughput optimal have been developed in the literature (Armony
and Bambos 2003). In this paper, we show that when there are simultaneous resource requirements for
several types of servers, managing the idleness has to be done in two levels: first, manage the avoidable
idleness and then the unavoidable one. Gurvich and Van Mieghem (2017) study scheduling of parallel
processing networks with collaboration and multi-tasking. In such networks, they show that the network
capacity can be smaller than the capacity of the bottleneck resource. They then propose scheduling policies
that are throughput optimal. In our setting, we add the extra feature that different customers can also
require different units of resources. We also explicitly take holding cost into account.

Scheduling jobs with different resource requirements were first studied in communication/computer
systems. In those systems, different jobs may require a different amount of memory and CPU capacity
(Grandl et al. 2014). The question of how to fairly share the available bandwidth between competing
streams has been extensively studied; see, for example Kelly et al. (1998), Massoulié and Roberts (). The
difference between these models and ours is the integrality constraints, which do not allow us to partially
admit jobs. This difference poses the challenge of properly managing priority-induced idleness.

2 THE MODEL

We consider a parallel processing network with I classes of customer and J types of servers. There can be
multiple servers of each type. Let N = (N1, . . . ,NJ)∈NJ denote the number of servers in each pool, where N
denotes the set of natural numbers including 0. We further introduce a matrix M = {M ji}1≤ j≤J,1≤i≤I ∈NJ×I

to denote the resource requirements of different classes of customers. In particular, M ji denotes the number
of Type j resource required by a Class i customer. We focus on Markovian systems with independent
Poisson arrival processes and exponential service times. Let {λi(t) : t ≥ 0} denote the arrival rate function
of Class i. Then, the cumulative number of Class i arrivals up until time t follows a Poisson distribution
with rate

∫ t
0 λi(u)du. We also write µi as the service rate of Class i and the service times of Class i customers
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are independent and identically distributed exponential random variables with rate µi. A scheduling policy
determines how to allocate available servers to different classes of customers. Customers within each class
are served on a first-come-first-served basis.

Figure 1 provides an illustration of our model with two classes of customers and two types of resources
(i.e., I = 2, J = 2). There are N1 = 3 servers of Type 1 (each represented by a triangle), and N2 = 4 servers
of Type 2 (each represented by a circle). Additionally, we have M = [1 1 ; 2 1]; that is, each Class 1
customer requires one Type 1 server and two Type 2 servers; each Class 2 customer requires one server
of each type. There are three Class 1 customers and two Class 2 customers in both scenarios illustrated in
the figure. In Scenario A, two Class 1 customers are admitted to service, while one Class 1 customer and
two Class 2 customers wait in queue. This leaves one Type 1 server (triangle) idle. In Scenario B, one
Class 1 customer and two Class 2 customers are admitted to service, while two Class 1 customers wait in
queue. In this scenario, all servers are utilized.
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Figure 1: Model illustration – Two classes of customers and two types of resources.

Let Xi(t) denote the number of Class i customers in the system at time t. Let π(t) = (π1(t), . . . ,πI(t)),
where πi(t) is the number of Class i customers in service at time t. π = {π(t) : t ≥ 0} can then be interpreted
as the scheduling policy (it is determined by the scheduling policy). We restrict ourselves to non-anticipative
preemptive policies.

Let ci denote the holding cost rate of a Class i customer. Our objective is to find a scheduling policy
that minimizes the long-run average holding cost, i.e.,

min
π∈Ω

limsup
T→∞

1
T

∫ T

t=0

I

∑
i=1

E[ciXi(u)]du, (1)

where Ω denote the set of admissible controls.
The scheduling problem (1) is an infinite-horizon continuous-time Markov decision process (MDP).

Note that the state space is countable and the action space at each state is compact, so it is without loss
of optimality to consider deterministic Markovian policies only (Puterman 2005). In particular, at each
t ≥ 0, π(t) can be viewed as a mapping from the state of Markov chain, X(t), to the admitted number
of customers. The huge state-space and policy space of the MDP (even after proper truncation) makes it
prohibitively expensive to solve. Moreover, even if we can solve the MDP approximately, the resulting
policy may be highly dependent on system primitives and hard to implement in practice. Our goal in this
paper is to find scheduling policies that achieve good and robust performance and are easy to implement.

Lastly, we comment that since our objective function is formulated as the long-run average cost, we
need some notion of long-run regularity of the arrival rate, e.g. periodicity, for the long-run average to be
well defined (Heyman and Whitt 1984). We also focus on parameter regimes for the system primitives
(e.g., arrival rates, service rates, and number of servers) under which the system can be stabilized under
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some controls. To facilitate subsequent discussions, when λi(t) = λi, i.e., is a constant. We define the
traffic intensity of the system, ρ , as

minρ

s.t.
K

∑
k=1

αkφk(i)µi = λi for i = 1 . . . , I;
K

∑
k=1

αk ≤ ρ;

ρ ≥ 0, αk ≥ 0 for k = 1, . . .K,

(2)

where φk = (φk(1), . . . ,φk(I)) denote the k-th possible service configuration, i.e., φk(i) is the number of
Class i customers admitted into service under configuration k. In particular, ρ can be considered as a
measure of the ‘network’ load (Gurvich and Van Mieghem 2015). As will be seen in Section 3.2, with
ρ < 1, the system is stabilizable.

3 MANAGING IDLENESS

As can be seen from Figure 1, different scheduling rules can induce different levels of idleness (e.g.,
Scenario A versus Scenario B). When the system is critically loaded (ρ close to 1), it is important to
properly manage the policy-induced idleness.

A natural way to avoid policy-induced idleness is to add a penalty term to the amount of incurred
idleness when evaluating a scheduling rule. For example, Zychlinski et al. (2020) propose a scheduling
policy that balances the cµ-index and the idleness incurred through an integer program (IP). We can easily
adapt their idea to our setting. In particular, define

max
z

I

∑
i=1

ciµizi +Γ
(0)

J

∑
j=1

I

∑
i=1

M jizi

s.t. Mz≤ N

0≤ z≤ x, zi ∈ N, i = 1, . . . , I,

(3)

where Γ(0) ≥ 0 is a hyper parameter for idle-awareness, i.e., by maximizing the objective function in (3),
we try to utilize as many servers as possible. We denote by G0 the mapping from x to the optimal z defined
by the IP (3). Then, the corresponding scheduling policy sets π(t) = G0(X(t)). We refer to this policy as
the naive idle-aware cµ-rule.

We next use simulation to evaluate the performance of this policy and other benchmark policies. In
the next and subsequent simulation studies, we plot how the average number of customers in the system
evolves over time for systems starting from some pre-specified initial state. This provides a good amount of
details on the system dynamics, including stability. In these experiments, the average number of customers
in the system is estimated based on 20 independent replications. Different systems with different primitives
are used in different examples. We provide more details about the system parameters in the caption of the
figures. When the system is stable, we also compare the long-run average costs under different policies in
some experiments. These long-run average are estimated using long-time average for T = 6×103.

We next demonstrate the performance of G0 through a simple numerical example. Consider a system
with N = (3,3) and M = [1 1 ; 1 3]. Figure 2 illustrates the four possible service configurations in this
system (in addition to the trivial configuration under which no customer is admitted to service). Figure
3 shows the average number of customers in the system as a function of time. In addition to the naive
idle-aware cµ-rule, we also consider the classic cµ-rule where we prioritize the class with a larger ciµi
index, and SNOS (smallest number of servers first). SNOS was proposed in Green (1981) for a single-type
of servers. In our case, we adjust it to prioritize customers that require the smallest number of servers in
total (i.e., Class 2 in this example). We observe that the classic cµ-rule, the naive idle-aware cµ-rule, and
SNOS all fail to stabilize the system, while this particular system can be stabilized. In particular, under
the system primitives in Figure 3, the traffic intensity defined in (2) is strictly less than 1.
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Figure 2: Possible service configurations when N = (3,3) and M = [1 1 ; 1 3]. The white dashed line
resources represent the idle servers.
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Figure 3: The average number of customers (two classes combined) in the system as a function of time
over a finite horizon T = 8× 103, under different scheduling policies. (N = (3,3), M = [1 1 ; 1 3],
µ = (0.34,0.8), λ = (0.25,0.45), c = (1,0.5), x(0) = (5,2).)

3.1 Different Types of Idleness

The observation from Figure 3, which we also see in many other examples, motivates us to look closely
into the different types of idleness. Specifically, we distinguish between two types of idleness: avoidable
idleness and unavoidable idleness.
Definition 1 Unavoidable Idleness: A service configuration induces unavoidable idleness if it is infeasible
to admit more customers to service, even though there are idle servers.
Definition 2 Avoidable Idleness: A service configuration induces avoidable idleness if at least one additional
customer could be admitted to service if there were such customers waiting in the queue.

Configuration A in Figure 2 includes unavoidable idleness: even though two servers of Type 1 are
idling, no other customers can be admitted into service. Configurations B and C induce avoidable idleness:
if there were more Class 2 customers in the system, they could have been admitted. In Configuration D
there is no idleness of any type. Note that in this example, even though serving Class 1 customers incurs
unavoidable idleness of two servers, Configuration A has to be used in order to serve Class 1 customers.
On the other hand, it is possible to serve Class 2 customers according to Configuration D, without inducing
any amount of idleness. Thus, under a reasonable policy, even though Configuration A and Configuration
C have the same amount of idle servers, Configuration A should be preferred to Configuration C. This
suggests that the two types of idleness need to be managed differently.
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3.2 The Generalized Idle-aware (GIA) cµ Rule

Based on the definition of the two types of idleness, we next introduce a modification to the naive idle-aware
cµ-rule where we allow different penalties for the two different types of idleness.

We first define the following IP max-min problem:

max
z

min
v

R(z,v) :=
I

∑
i=1

ciµizi−Γ1

J

∑
j=1

I

∑
i=1

M jivi−Γ2

J

∑
j=1

u j

s.t. M(z+ v)+u = N

0≤ z≤ x, zi,vi,u j ∈ N, i = 1, . . . , I, j = 1, . . . ,J,

(4)

where Γ1,Γ2 > 0, are hyper parameters for idle-awareness. To understand the intuition behind (4), we
note that v = (v1, . . . ,vI) can be interpreted as virtual customers. The inner minimization problem tends
to push v to be as large as possible. Thus, the resulting Mv quantifies the amount of avoidable idleness.
Meanwhile, from the first constraint, after sending v to its maximum possible value, u quantifies the amount
of unavoidable idleness. By introducing two different tuning parameters, Γ1 and Γ2, we can put different
weight on the two types of idleness. Let G denote the mapping from state x to the optimal z defined in
(4). Our proposed policy sets π(t) = G(X(t)). We refer to this new policy as the Generalized Idle-Aware
(GIA) cµ-rule.

To implement the policy, (4) only needs to be solved at event times (arrival or departure epochs).
Solving (4) has limited computational burdens in most settings. We would first try to prioritize the classes
according to their cµ-index. In the ‘boundary’ states where we incur some idleness after admitting jobs
according to the cµ-index, we can try swapping some of the admitted jobs with waiting jobs of other
classes to reduce idleness. In general, if we have enough servers to admit all the jobs or if we have enough
high index jobs to fill up all the servers, the solution would be straightforward. We only need to solve (4)
in the ‘boundary’ cases. In addition, the IP for these states can be solved off-line and stored. Then, we
only need to look up the solution whenever encountering these states.

In the next section, we study the performance GIA cµ rule with different values of Γ1 and Γ2 using
simulation. As a quick preview, the left plot in Figure 5 consider the same system as in Figure 3. We
observe that opposed to the cµ rule and the naive idle-aware cµ rule, the GIA cµ rule with Γ1 = 10 and
Γ2 = 1 stabilizes the system with an estimated long-run average cost of 10.

4 IDLE-AWARE PARAMETERS

The GIA cµ-rule is a very flexible class of policies. Note that if Γ1 = Γ2 = 0, we retrieve the cµ-rule, and
when Γ1 = Γ2, we retrieve the naive idle-aware cµ-rule. As was shown in Figure 3, both policies can lead
to poor performances due to instability. Thus, it is important to set some basic rules as how to choose the
idle-aware parameters.

Our first rule is that both parameters need to be positive, i.e., both types idleness need to be managed.
To see this, we consider two different models. The first one is the one shown in Figure 2. The second one
is illustrated in Figure 4. Note that both Configurations A and B in Figure 4 do not incur any avoidable
idleness. However, Configuration A incurs less unavoidable idleness than Configuration B. Figure 5 shows
the average number of customers in the system as a function of time in the two models (left versus right)
under the GIA cµ-rule with different values of (Γ1,Γ2). We observe that in the left plot, having Γ1 = 0
leads to instability. That is because when Γ1 = 0, under the system parameters, Configurations B, C, and
D are preferred to Configuration A in Figure 2. In other words, Class 1 customers are served only when
there are no Class 2 customers in the system. The Class 1 queue blows up in this case as we incur too
much avoidable idleness when implementing Configurations B and C. In the right plot we see that Γ2 = 0
can lead to instability. This is because when Γ2 = 0, under the system parameters, Configuration B is
preferred to Configuration A in Figure 4. In this case, we end up serving the Class 2 queue too fast that
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when we switch to serve the Class 1 queue, there is no Class 2 customer left, i.e., we can serve only one
Class 1 customer while incurring two units of avoidable idleness. Thus, even though the Class 2 queue is
maintained close to zero, the Class 1 queue blows up.

Figure 5 also shows that Γ1 needs to be larger than Γ2; i.e., we should put more penalty (weight) on
avoidable idleness than unavoidable idleness. Thus, our second rule is that Γ1 should be larger than Γ2,
i.e., it is more important to reduce avoidable idleness.

Our third rule is that both Γ1 and Γ2 need to be sufficiently large. To see this, in Figure 6, we compare
the average number of customers as a function of time for the two models (left versus right) under the GIA
cµ-rule with different values of (Γ1,Γ2) satisfying Γ1� Γ2. We use a periodic time-varying arrival rate
in this figure. We observe that having Γ1� Γ2 > 0 alone may not be enough. Both Γ1 and Γ2 need be
sufficiently large, i.e., we need to put enough weight on both types of idleness, to ensure system stability.

To sum up, we note that the “appropriate” values of (Γ1,Γ2) can be highly dependent on system
parameters, i.e., c, µ , N and M. For example, setting Γ1 = 1 and Γ2 = 0.1 stabilizes the system in the
left plot of Figure 6, but fails to stabilize the system in the right plot of that figure. We next take a closer
look at the two examples in Figure 6. In the left plot (for the system depicted in Figure 2), it is important
to make sure that Γ1 is large enough so that Configuration A is preferred to Configurations B and C (i.e.
eliminate the avoidable idleness). In the right plot (for the system depicted in Figure 4), it is important to
make sure that Γ2 is large enough so that Configuration A is preferred to Configuration B (i.e. eliminate
the unavoidable idleness). More generally, from the perspective of throughput optimality, we need to make
sure that Γ1 and Γ2 are chosen such that we put a higher weight on minimizing the idleness than maximizing
the cµ index. In particular, Γ1 should be larger than max1≤i≤I ciµisi, where si = min1≤ j≤J N( j)/M( j, i) is
the maximal number of Class i customers allowed in service. We can then fine-tune the value of Γ2 to put
enough weight on unavoidable idleness.

�

�

� �

�

�

Figure 4: Service configuration for N = (2,4) and M = [1 1 ; 1 3].

When taking cost minimization into account, the optimal choice of (Γ1,Γ2) may depend on the load
of the system. The general rule of thumb is that when the system is lightly loaded, we should put more
weight on the instantaneous cost-reduction rate, i.e., the ciµi’s, as managing idleness is of less concern.
When the system is heavily loaded, we should put more weight on the two types of idleness. For example,
in Figure 7 we compare the long-run average costs of the two models (left versus right) with different
traffic intensities (defined in (2)) under the GIA cµ rule with different values of (Γ1,Γ2). We observe that
when traffic intensity is low, policies with different hyper-parameters perform similarly. Indeed, when ρ is
sufficiently small, the GIA cµ rule with smaller values (Γ1,Γ2) performs slightly better than that with that
with large values of (Γ1,Γ2), e.g., when ρ < 0.7 in the right plot, (Γ1,Γ2) = (0.5,0.25) or (1,0.25) are
performing better than (Γ1,Γ2) = (4,2). However, as traffic intensity grows, the larger values of (Γ1,Γ2)
lead to better performance. Note that when ρ is large (gray area in the plots), the GIA cµ rule with small
values of (Γ1,Γ2) can not stabilize the system. To set a general rule of thumb, we note that when ρ is small,
the performances of GIA cµ rule is similar for different values of (Γ1,Γ2). When ρ is large, however,
large values of (Γ1,Γ2) perform substantially better. Thus, we suggest to first set Γ1 to be larger than
max1≤i≤I ciµisi, where si = min1≤ j≤J N( j)/M( j, i); then to set Γ2 to be a positive number that is smaller
than Γ1.
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Figure 5: Comparing the average number of customers in the system as a function of time over a finite
horizon T = 5×103, for different values of Γ1 and Γ2. (M = [1 1 ; 1 3], and x(0) = (3,3). In the left plot,
N = (3,3), µ = (0.34,0.8), λ = (0.25,0.45), and c = (1,0.5); In the right plot, N = (2,4), µ = (0.3,0.8),
and λ = (0.26,0.75). Average is estimated using 20 replications.)

Lastly, as the system size grows, the policy-induced idleness is of less concern. The intuition is that
idling one server in a two server system is half of the capacity, while idling one server in an n server
system is only 1/n of the capacity. Figure 8 compares performance of the GIA cµ-rule for different sizes
of systems. In particular, we scale up the size of the systems, so that for the η-th system, η = (5, . . . ,35),
there are Nη = Nη servers, and the average arrival rate of Class i is ηλi(t), t ≥ 0. We observe that while
there could be large differences in the performances among the policies in small systems, as the size of
the system grows large, these differences diminish. We do not include systems with η smaller than 5 in
the plots, as (Γ1,Γ2) = (0,10) or (10,0) can lead to instability in those small systems. This observation
highlights the importance of choosing the “right” hyper parameters when scheduling small systems.

5 COMPARISON WITH THE MAX-WEIGHT POLICY

A well-studied class of policies that is throughput optimal is the max-weight policy (Armony and Bambos
2003; Dai and Lin 2005). The max-weight policy also has certain cost-minimization features (Stolyar
2004). In this section, we compare the performances of the GIA cµ-rule to the max-weight policy.

For the max-weight policy, at each event time t, given X(t) = x, the scheduling policy allocates servers
according to the following IP.

max
z

I

∑
i=1

ciµixizi

s.t. Mz≤ N

0≤ zi ≤ xi,zi ∈ N, i = 1, . . . , I,

(5)

Table 1 compares the average cost of each policy for the model illustrated in Figure 2, i.e., N = (3,3)
and M = [1 1 ; 1 3], with different parameters (scenarios). We define the workload of each class on the
bottleneck resource (Type 2, in this case) as

Wi =
Mi2λi

N2µi
, i = 1,2.

In Scenarios 1a–1d, the workload of Class 1 is smaller than the workload of Class 2, and vice versa in
Scenarios 2a–2d. We also define ciµi/M2i, i = 1,2, as the instantaneous cost reduction rate of Class i jobs
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Figure 6: Comparing the average number of customers in the system as a function of time over a finite horizon
T = 5×103, for different values of Γ1 and Γ2. (M = [1 1 ; 1 3], c = (1,0.5), x(0) = (10,5). In the left plot,
N = (3,3), µ = (0.34,0.8), λ (t) = (0.4,0.2) when t = k+1, . . . ,k+250, k = 0,500, . . . ,T , and (0.1,0.7),
otherwise. In the right plot, N = (2,4), µ = (0.3,0.8), λ (t) = (0.4,0.1) when t = k + 1, . . . ,k + 250,
k = 0,500, . . . ,T , and (0.5,0.1), otherwise. Average is estimated using 20 replications.)

on the bottleneck resource (Type 2). For each scenario in the table, we allow different values of Γ1 and
Γ2 for the GIA cµ-rule. We observe that when properly tuned, the GIA cµ-rule achieves significantly
better performance than the max-weight policy. This is well-expected as max-weight is not designed to
minimize linear holding costs. Lastly, we comment that the max-weight is throughput optimal. Based on
our simulation experiments for systems under different traffic intensities, the GIA cµ rule with properly
chosen (Γ1,Γ2) also seems to be throughput optimal.

Table 1: Comparing the long-run average cost under the max-weight policy and the GIA cµ-rule (N = (3,3),
M = [1 1 ; 1 3]. In Scenarios 1a–1d, we have µ = (0.45,0.55), λ = (0.15,0.94) thus, W1 <W2; in Scenarios
2a–2d, we have µ = (0.34,0.8), λ = (0.25,0.45) thus, W1 >W2. The long-run average is estimated based
on long-time average with T = 6×103.)

Scenario Workload Cost reduction rate (c1, c2) Max-weight GIA cµ (Γ1, Γ2) Improvement

1a

W1 <W2

c1µ1/M21 > c2µ2/M22
(10, 0.5) 24.3 13.3 (100,0.01) 45%

1b (6, 1) 29.9 22.3 (100,0.1) 25%

1c
c1µ1/M21 < c2µ2/M22

(1, 5) 31.8 18.5 (100,0.1) 42%

1d (0.5, 10) 51.3 32.2 (100,0.01) 37%

2a

W1 >W2

c1µ1/M21 > c2µ2/M22
(10, 0.5) 85.3 48.3 (100,0.01) 43%

2b (8, 1) 74.4 63 (100,0.01) 15%

2c
c1µ1/M21 < c2µ2/M22

(1, 5) 35.2 19.7 (100,1) 44%

2d (0.5,10) 44.6 23.3 (100,0.1) 48%

6 EXTENSION TO TRANSIENT COST MINIMIZATION

In various applications, there can be random shocks that take the system far from its usual mode of operation.
In those scenarios, it is more important to improve the transient performance of the system, e.g., finding a
good scheduling policy to manage the surge demand. A very relevant example, is the 2020 Coronavirus
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Figure 7: Comparing the long-run average cost for different traffic intensities, ρ , and different values of Γ1
and Γ2. (M = [1 1 ; 1 3]. In the left plot, N = (3,3), c = (1,0.5), µ = (0.34,0.8), λ (t) = η(0.125,0.225),
η = (1,1.2, . . . ,2). In the right plot, N = (2,4), c = (1,10), µ = (0.3,0.8), λ (t) = η(0.13,0.375). The
long-run average cost is estimated based on the long-time average with T = 6×103.)

pandemic (Zhe et al. 2020) , which caused a sudden surge in demand on hospital capacity, especially ICU
capacity.

In this section, we consider the objective of minimizing the cumulative expected holding cost over a
finite time horizon T , i.e.

min
π∈Ω

∫ T

t=0

I

∑
i=1

E[ciXi(u)]du,

when the arrival rate is highly non-stationary over this time interval. We observe through extensive numerical
experiments that that the GIA cµ-rule still performs well in minimizing the transient holding costs.

Figure 9 presents two scenarios in which at time t = 2000, both classes experience a surge in demands
that lasts for 200 units of time. The figure presents the average number of customers in the system for
each class as a function of time over the time horizon [0,104]. In the left plot, the cumulative cost over
this time horizon is 59×104 for the Max-weight policy, and 41×104 for the GIA cµ-rule. In the right
plot, the cumulative cost is 33×104 for max-weight, and 22×104 for the GIA cµ-rule. In both cases, the
GIA cµ-rule substantially outperform the max-weight policy, demonstrating the robustness of our policy,
even in minimizing the transient costs.

7 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we study a new class of multi-class multi-pool queueing systems, where different classes
of customers have heterogeneous resource requirements. We propose the GIA cµ rule that balances two
types of idleness: avoidable and unavoidable, and the instantaneous cost reduction rate. By using extensive
simulation experiments, we show that when tuned properly, the proposed policy performs much better than
other benchmark policies.

We identify two directions for future research. First, our simulation experiments suggest that with
properly tuned parameters, the GIA cµ rule is throughput optimal. Rigorously establishing this would be an
interesting future research direction. Second, it would be interesting to include more real-life complications
into the model and develop appropriate scheduling policies accordingly. These complications include non-
preemption, predictable pattern of time-variability in demand, etc. Note that our current policy is oblivious
to the arrival rate. Taking the patterns of arrival rates into account may lead to further improvement of the
policy in time-varying settings.
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Figure 8: Comparing the long-run average cost for different system sizes and different values of Γ1 and Γ2.
(M = [1 1 ; 1 3], c = (1,0.5). In the left plot, N = (3η ,3η), λ = η(0.25,0.45), and µ = (0.34,0.8); In
the right plot, N = (2η ,4η), µ = (0.3,0.8), and λ = η(0.26,0.75). The long-run average cost is estimated
based on the long-time average with T = 6×103).

REFERENCES
Altay, N. 2012. “Capability-Based Resource Allocation for Effective Disaster Response”. IMA Journal of Management

Mathematics 24(2):253–266.
Armony, M., and N. Bambos. 2003. “Queueing Dynamics and Maximal Throughput Scheduling in Switched Processing

Systems”. Queueing systems 44(3):209–252.
Dai, J. G., and W. Lin. 2005. “Maximum Pressure Policies in Stochastic Processing Networks”. Operations Research 53(2):197–

218.
Glynn, P. W., and S. Asmussen. 2007. Stochastic Simulation: Algorithms and Analysis. New York, NY: Springer.
Grandl, R., G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella. 2014. “Multi-Resource Packing for Cluster Schedulers”.

ACM SIGCOMM Computer Communication Review 44(4):455–466.
Green, L. 1981. “Comparing Operating Characteristics of Queues in which Customers Require a Random Number of Servers”.

Management Science 27(1):65–74.
Gurvich, I., and J. A. Van Mieghem. 2015. “Collaboration and Multitasking in Networks: Architectures, Bottlenecks, and

Capacity”. Manufacturing & Service Operations Management 17(1):16–33.
Gurvich, I., and J. A. Van Mieghem. 2017. “Collaboration and Multitasking in Networks: Prioritization and Achievable

Capacity”. Management Science 64(5):2390–2406.
Harrison, J. M. 1998. “Heavy-Traffic Analysis of a System with Parallel Servers: Asymptotic Optimality of Discrete-Review

Policies”. Annals of applied probability:822–848.
Heyman, D. P., and W. Whitt. 1984. “The Asymptotic Behavior of Queues with Time-Varying Arrival Rates”. Journal of

Applied Probability 21(1):143–156.
Kelly, F. P., A. K. Maulloo, and D. K. H. Tan. 1998. “Rate Control for Communication Networks: Shadow Prices, Proportional

Fairness and Stability”. Journal of the Operational Research society 49(3):237–252.
Ma, N., and W. Whitt. “Using Simulation to Study Service-Rate Controls to Stabilize Performance in a Single-Server Queue

with Time-Varying Arrival Rate”. In Proceedings of the 2015 Winter Simulation Conference, edited by L. Yilmaz, W. Chan,
I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti. Piscataway, NJ, USA.

Mandelbaum, A., and Z. Feldman. “Using Simulation-Based Stochastic Approximation to Optimize Staffing of Systems with
Skills-Based Routing”. In Proceedings of the 2010 Winter Simulation Conference, edited by B. Johansson, S. Jain,
J. Montoya-Torres, J. Hugan, and E. Yucesan, 3307–3317. Piscataway, NJ, USA: Institute of Electrical and Electronics
Engineers, Inc.

Mandelbaum, A., and A. L. Stolyar. 2004. “Scheduling Flexible Servers with Convex Delay Costs: Heavy-Traffic Optimality
of the Generalized cµ-Rule”. Operations Research 52(6):836–855.
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Figure 9: Average number of customers in the system as a function of time: the GIA cµ-rule with
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